【BZOJ4439】[Swerc2015]Landscaping【最小割】

时间:2022-10-16 04:25:50

【题目链接】

题解:

第一眼觉得是裸最小割模型,写了之后发现样例跑出个5000...

问了神犇,才知道:

1 相同地之间也得加容量为A的边,因为一开始的高低地不能决定最后策略的高低地。

2 要加双向边,因为一开始并不知道某个点应该属于S集还是T集。


复杂度:

时间复杂度:O(maxflow(n, m)),空间复杂度O(n + m)


1WA:

相同地之间也得加容量为A的边,而且得加双向边。


GET:

原来我一直不会最小割呀。

/* Telekinetic Forest Guard */
#include <cstdio>
#include <cstring>
#include <algorithm>

using namespace std;

typedef long long LL;

const int maxg = 55, maxn = 2505, maxm = 50005, maxq = 100000, inf = 0x3f3f3f3f;

int n, m, head[maxn], cur[maxn], cnt, bg, ed, A, B, depth[maxn], q[maxq];
char str[maxg];

struct _edge {
	int v, w, next;
} g[maxm << 1];

inline void add(int u, int v, int w) {
	g[cnt] = (_edge){v, w, head[u]};
	head[u] = cnt++;
}

inline void insert(int u, int v, int w) {
	add(u, v, w); add(v, u, 0);
}

inline bool bfs() {
	for(int i = 0; i <= ed; i++) depth[i] = -1;
	int h = 0, t = 0, u, i; depth[q[t++] = bg] = 1;
	while(h != t) for(i = head[u = q[h++]]; ~i; i = g[i].next) if(g[i].w && !~depth[g[i].v]) {
		depth[g[i].v] = depth[u] + 1;
		if(g[i].v == ed) return 1;
		q[t++] = g[i].v;
	}
	return 0;
}

inline int dfs(int x, int flow) {
	if(x == ed) return flow;
	int left = flow;
	for(int i = cur[x]; ~i; i = g[i].next) if(g[i].w && depth[g[i].v] == depth[x] + 1) {
		int tmp = dfs(g[i].v, min(g[i].w, left));
		left -= tmp; g[i].w -= tmp; g[i ^ 1].w += tmp;
		if(g[i].w) cur[x] = i;
		if(!left) return flow;
	}
	if(left == flow) depth[x] = -1;
	return flow - left;
}

int main() {
	scanf("%d%d%d%d", &n, &m, &A, &B); bg = 0; ed = n * m + 1;
	for(int i = 0; i <= ed; i++) head[i] = -1; cnt = 0;

	for(int i = 1; i <= n; i++) {
		scanf("%s", str + 1);
		for(int j = 1; j <= m; j++) {
			if(str[j] == '#') insert(bg, (i - 1) * m + j, B);
			else insert((i - 1) * m + j, ed, B);
			if(i != n) insert((i - 1) * m + j, i * m + j, A), insert(i * m + j, (i - 1) * m + j, A);
			if(j != m) insert((i - 1) * m + j, (i - 1) * m + j + 1, A), insert((i - 1) * m + j + 1, (i - 1) * m + j, A);
		}
	}

	int ans = 0;
	while(bfs()) {
		for(int i = 0; i <= ed; i++) cur[i] = head[i];
		ans += dfs(bg, inf);
	}

	printf("%d\n", ans);
	return 0;
}