R语言-时间序列

时间:2021-12-07 17:13:17
1 sales <- c(18, 33, 41,  7, 34, 35, 24, 25, 24, 21, 25, 20, 
 2            22, 31, 40, 29, 25, 21, 22, 54, 31, 25, 26, 35)
 3 # 1.生成时序对象
 4 tsales <- ts(sales,start = c(2003,1),frequency = 12)
 5 plot(tsales)
 6 # 2.获得对象信息
 7 start(tsales)
 8 end(tsales)
 9 frequency(tsales)
10 # 3.对相同取子集
11 tsales.subset <- window(tsales,start=c(2003,5),end=c(2004,6))
12 tsales.subset
复制代码








  结论:手动生成的时序图


2.简单移动平均


案例:尼罗河流量和年份的关系


复制代码
1 library(forecast)
2 opar <- par(no.readonly = T)
3 par(mfrow=c(2,2))
4 ylim <- c(min(Nile),max(Nile))
5 plot(Nile,main='Raw time series')
6 plot(ma(Nile,3),main = 'Simple Moving Averages (k=3)',ylim = ylim)
7 plot(ma(Nile,7),main = 'Simple Moving Averages (k=3)',ylim = ylim)
8 plot(ma(Nile,15),main = www.yongshiyule178.com 'Simple Moving Averages (k=3)',ylim = ylim)
9 par(opar)
复制代码




  结论:随着K值的增大,图像越来越平滑我们需要找到最能反映规律的K值


3.使用stl做季节性分解


案例:Arirpassengers年份和乘客的关系


复制代码
 1 # 1.画出时间序列
 2 plot(AirPassengers)
 3 lAirpassengers <- log(AirPassengers)
 4 plot(lAirpassengers,ylab = 'log(Airpassengers)')
 5 # 2.分解时间序列
 6 fit <- stl(lAirpassengers,s.window = 'period')
 7 plot(fit)
 8 fit$time.series
 9 par(mfrow=c(2,1))
10 # 3.月度图可视化
11 monthplot(AirPassengers,xlab='',ylab='')
12 # 4.季度图可视化
13 seasonplot(AirPassengers,year.labels = T,main = '')
复制代码




 


                        原始图                                                                                                                                    对数变换






 


                  总体趋势图                                                                                                                        月度季度图


              


                               


 4.指数预测模型


  4.1单指数平滑


    案例:预测康涅狄格州的气温变化


复制代码
# 1.拟合模型
fit2 <- ets(nhtemp,model = 'ANN')
fit2
# 2.向前预测
forecast(fit2,1)
plot(forecast(fit2,1),xlab = 'Year',
     ylab = expression(paste("www.huayiyuL.com Temperature (",degree*F,")",)),
     main="New Haven Annual Mean Temperature")
# 3.得到准确的度量
accuracy(fit2)
复制代码




      结论:浅灰色是80%的置信区间,深灰色是95%的置信区间






  4.2有水平项,斜率和季节项的指数模型


    案例:预测5个月的乘客流量


复制代码
 1 # 1.光滑参数
 2 fit3 <- ets(log(AirPassengers),model = 'AAA')
 3 accuracy(fit3)
 4 # 2.未来值预测
 5 pred <- forecast(fit3,5)
 6 pred
 7 plot(pred,main='Forecast www.fengshen157.com  for air Travel',ylab = 'Log(Airpassengers)',xlab = 'Time')
 8 # 3.使用原始尺度预测
 9 pred$mean <- exp(pred$mean)
10 pred$lower <- exp(pred$lower)
11 pred$upper <- exp(pred$upper)
12 p <- cbind(pred$mean,pred$lower,pred$upper)
13 dimnames(p)[[2]] <- c('mean','Lo 80','Lo 95','Hi 80','Hi 95')
14 p
复制代码








      结论:从表格中可知3月份的将会有509200乘客,95%的置信区间是[454900,570000]


  4.3ets自动预测


    案例:自动预测JohnsonJohnson股票的趋势


1 fit4 <- ets(JohnsonJohnson)
2 fit4
3 plot(forecast(fit4),main='Johnson and Johnson Forecasts',
4      ylab="Quarterly Earnings (Dollars)", xlab="Time")




      结论:预测值使用蓝色线表示,浅灰色表示80%置信空间,深灰色表示95%置信空间


5.ARIMA预测


步骤:


  1.确保时序是平稳的


  2.找出合理的模型(选定可能的p值或者q值)


  3.拟合模型


  4.从统计假设和预测准确性等角度评估模型


  5.预测


复制代码
library(tseries)
plot(Nile)
# 1.原始序列差分一次
ndiffs(Nile)


dNile <- diff(Nile)
# 2.差分后的图形
plot(dNile)
adf.test(dNile)
Acf(dNile)
Pacf(dNile)
# 3.拟合模型
fit5 <- arima(Nile,order = c(0,1,1))
fit5
accuracy(fit5)
# 4.评价模型
qqnorm(fit5$residuals)
qqline(fit5$residuals)
Box.test(fit5$residuals,type = 'Ljung-Box')
# 5.预测模型
forecast(fit5,3)
plot(forecast(fit5,3),xlab = 'Year',ylab = 'Annual Flow')
复制代码




 


                原始图                                                                                                                                        一次差分图形


 


 


            正态Q-Q图(如果满足正态分布,点会落在图中的线上)                                                                                       使用Arima(0,1,1)模型的预测值


Arima自动预测


  案例:预测3个月之后的太阳黑子


复制代码
1 fit6 <- auto.arima(sunspots)
2 fit6
3 forecast(fit6,3)
4 accuracy(fit6)
5 plot(forecast(fit6,3), xlab = "Year",
6      ylab = "Monthly sunspot numbers")
复制代码




     结论:函数自动选定(2,1,2)与其他模型相比,AIC的值最小,预测结果更准确