文件名称:游戏运营数据分析.docx
文件大小:26KB
文件格式:DOCX
更新时间:2022-12-24 00:03:27
文档资料
任何一款游戏运营,都是以UED、数据分析为导向,如何开发、运营好一款成功的全球社 交游戏,是每个社交游戏产品经理头等大事。用数据说话,是一个简单明快的操作方式,但社交游戏的数据如何分类?海内外关注点有何区别?相信作为每个社交游 戏产品经理是非常关心的话题,那么我们就从基础知识入手,逐步梳理出符合运营需求的核心数据环节,抛弃冗长复杂的多类数据,为自己的成功打下扎实的基础。 付费率=付费用户÷活跃用户x100 活跃率=登陆人次÷平均在线人数 ARPU值=收入÷付费用户 用户流失率=游戏当前活跃用户规模÷历史注册总量 同时在线峰值=24小时内同时在线最高达到人数 平均在线=24小时每小时同时在线相加总和÷24小时 *运营游戏平均同时在线用户=ACU 【有称ACCU】 采用道具收费模式游戏活跃付费用户=APC 活跃付费账户=APA 付费用户平均贡献收入=ARPU 当日登录账号数=UV 用户平均在线时长=TS 最高同时在线人数=PCU 【有称PCCU】 同时在线人数=CCU 付费人数一般是在线人数2~4倍。 活跃用户(玩家):是指通过你的推广代码注册,不属于小号或作弊情况、正常进行游戏一个月以上未被官方删除的用户视为活跃用户 。 您推广的两个用户目前还没有通过至少1个月的审查时间,您可以在您的推广纪录中查看您推广用户的注册时间。且这两个用户需要满足上述对活跃玩家的定义才 能称为活跃玩家! 活跃付费账户=APA。 每个活跃付费用户平均贡献收入=ARPU。 【活跃天数计算定义】 活跃天指用户当天登陆游戏一定时间、认定用户当天为活跃、活跃天数加1天。 当天0:00-23:59登陆游戏时间2小时以上用户当天为活跃天、活跃天数累积1天。 当天0:00-23:59登陆游戏时间0.5小时至2小时、活跃天数累积0.5天。 当天0:00-23:59登陆游戏时间0.5小时以下、不为其累积活跃天数。 游戏运营数据分析全文共4页,当前为第1页。每日: 游戏运营数据分析全文共4页,当前为第1页。 ---------用户数量描述 在线人数:(取的当日某个时刻最高在线,一般发生在9:30左右) 新进入用户数量:(单日登录的新用户数量) 当日登录用户数量: 每日登录/在线: ---------盈利状况描述 每日消耗构成:(根据金额和数量做构成的饼状图) 每日消耗金额: 每日消费用户数量: 每日充值金额: 每日充值用户数量: 每日充值途径: ---------产品受关注程度描述 官网首页访问量: 客户端安装量:(根据安装完成弹出的页面) 客户端下载量: 客户端下载点击量: 安装率:下载安装/下载量 ---------游戏系统描述 每日金钱增量、消耗和净增值: 等级分布: 忠诚用户等级分布: 特征物品市场价格(如联众游戏豆): 每周: ---------用户群体描述 活跃用户数量:当周登录过游戏的用户数量 忠诚用户数量:本周登陆3次以上(当天重复登陆算1次),最高角色等级超过15级,在线时长超过14小时的帐号 流失用户数量:上周登录但本周没有登录的用户数量 流失率:流失用户/上周活跃数量 忠诚流失率:上周忠诚用户当周没有登录用户的数量/上周忠诚用户数量 忠诚度:忠诚用户数量/活跃用户数量*修正值(新进人数的变化比例) 转化率:上周登录的用户在本周转化为忠诚用户的比例 ---------盈利变化描述 ARPU值(周):当周充值总额/当周付费用户数量;当周充值总额/当周平均最高在线 付费用户:该周有过付费行为的玩家数量 新增付费用户数量:本周新增的付费用户 付费率:该周付费用户数量/该周登录用户 付费用户流失数量:上周付费用户本周未登录数量 付费流失率:上周付费用户本周未登录的比例 注册转付费:某一天注册的用户在一周后付费的用户数量及比例 每月: 游戏运营数据分析全文共4页,当前为第2页。ARPU值:该月充值总额/当月付费用户数量;当月充值总额/当月平均最高在线 游戏运营数据分析全文共4页,当前为第2页。 付费用户:该月有过付费行为的玩家数量 新增付费用户数量: 付费用户流失数量: 付费流失率: 活跃用户数量:该月登录过的用户; 针对道具: 每日购买量: 每日使用量: 转卖数量:购买然后在手里出售给其他玩家的数量 转卖价格: 流通速度:转卖总次数/参与转卖的道具数量 购买者等级分布: 使用者等级分布: 产品分析为游戏包装、盈利设计提供非常必要的支持,也是指导日常运营的重要参考。是运营工作中的核心内容之一。但和其他行业一样,即便做了非常多的数据分 析和其他信息收集,我们往往依然很难获得足够的信息来得到一个非常清晰的结论,经验和直觉在决策中还是扮演重要的地位。 产品分析分为: 一、从信息收集渠道上来看: (一)数据分析(通过数据库或后台查询的数据) 1.例行数据分析(每日、