与下述方程-ansysworkbench 工程实例详解

时间:2024-07-01 15:44:14
【文件属性】:

文件名称:与下述方程-ansysworkbench 工程实例详解

文件大小:4.07MB

文件格式:PDF

更新时间:2024-07-01 15:44:14

数学建模

第十四章 稳定状态模型 虽然动态过程的变化规律一般要用微分方程建立的动态模型来描述,但是对于某些 实际问题,建模的主要目的并不是要寻求动态过程每个瞬时的性态,而是研究某种意义 下稳定状态的特征,特别是当时间充分长以后动态过程的变化趋势。譬如在什么情况下 描述过程的变量会越来越接近某些确定的数值,在什么情况下又会越来越远离这些数值 而导致过程不稳定。为了分析这种稳定与不稳定的规律常常不需要求解微分方程,而可 以利用微分方程稳定性理论,直接研究平衡状态的稳定性就行了。 本章先介绍平衡状态与稳定性的概念,然后列举几个这方面的建模例子。 §1 微分方程稳定性理论简介 定义 1 称一个常微分方程(组)是自治的,如果方程(组) ⎥ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎢ ⎣ ⎡ == )( ),( ),( 1 tf txf txF dt dx N M (1) 中的 )(),( xFtxF = ,即在F 中不含时间变量 t。 事实上,如果增补一个方程,一个非自治系统可以转化自治系统,就是说,如果定 义 ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ = t x y , ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ = 1 ),( )( txF yG 且引入另一个变量 s ,则方程(1)与下述方程 )( yG ds dy = 是等价的。这就是说自治系统的概念是相对的。下面仅考虑自治系统,这样的系统也称 为动力系统。 定义 2 系统 )(xF dt dx = (2) 的相空间是以 ),,( 1 nxx L 为坐标的空间 nR ,特别,当 2=n 时,称相空间为相平面。 空间 nR 中的点集 },,1,)2()(|),,{( 1 nitxxxx iin LL == 满足 称为系统(2)的轨线,所有轨线在相空间中的分布图称为相图。 定义 3 相空间中满足 0)( 0 =xF 的点 0x 称为系统(2)的奇点(或平衡点)。 奇点可以是孤立的,也可以是连续的点集。例如,系统 ⎪ ⎪ ⎩ ⎪⎪ ⎨ ⎧ += += dycx dt tdy byax dt tdx )( )( (3) 当 0=− bcad 时,有一个连续的奇点的集合。当 0≠− bcad 时, )0,0( 是这个系统的 唯一的奇点。下面仅考虑孤立奇点。为了知道何时有孤立奇点,给出下述定理:


网友评论