文件名称:多重组合神经网络模型在年径流预测中的应用 (2014年)
文件大小:974KB
文件格式:PDF
更新时间:2024-06-09 18:30:06
工程技术 论文
针对线性组合预测模型预测精度不高、单一预测模型权重较难确定和非线性组合预测模型组合函数难以构造等问题,为最大限度地挖掘输入向量间的有用信息以及充分发挥神经网络模型的高度非线性映射能力,提出一种基于BP、Elman、RBF、GRNN这4种神经网络算法原理的多重组合年径流预测模型。 以4种单一预测模型的预测结果作为一次组合预测模型的输入向量,实测流量作为输出向量,构建4输入1输出的一次组合预测模型;再以一次组合预测模型预测结果作为二次组合预测模型的输入向量,实测流量作为输出向量,构建4输入1输出的二次组合预测