文件名称:基于假设检验匹配约束的点云配准算法研究
文件大小:1.98MB
文件格式:PDF
更新时间:2024-05-20 08:59:02
点云配准 主成分分析 迭代最近点
针对点云配准中效率低、误差大、抗噪性弱等问题,提出了一种改进的基于t检验的迭代最近点(T-ICP)算法。在初始配准阶段,采用统计分析对源点云和目标点云中的离群点进行标记并提取非离群点,然后采用主成分分析法(PCA)计算非离群源点云和非离群目标点云之间的变换矩阵,并将变换矩阵应用于源点云。在精配准阶段,以迭代最近点(ICP)算法作为基本框架,通过对候选点对的邻域距离分布进行t检验来剔除错误点对,并采用均匀分布策略来搜索点对,保证点云的完整形态配准。实验结果表明,相较于迭代最近点算法以及近两年一些改进的配准算法,该算法在效率和精度上分别提高了10%~50%和4%~40%,并具有较好的鲁棒性。