文件名称:论文研究-基于社区划分的多线程潜在好友推荐算法.pdf
文件大小:1.35MB
文件格式:PDF
更新时间:2022-08-11 16:21:02
多线程,社区划分,核心关系子网,标签传播,好友推荐
针对基于社区划分的潜在好友推荐算法FRCD运行速度慢的问题,提出了一种基于社区划分的多线程潜在好友推荐算法MTFRCD。该算法在网络拓扑图上利用多线程技术寻找核心关系子网,以核心关系子网作为标签种子节点,使用多线程并发传播标签来发现网络拓扑图上的社区结构,利用社区发现结果在社区内部推荐潜在好友。人工网络的实验结果表明,MTFRCD相比于传统的FRCD,在性能近似的前提下具有明显的速度增长。因此,将该算法应用于真实社交网络(学者网)平台的潜在好友挖掘和推荐,根据推荐结果的评测,验证了算法具有良好的推荐效果。