文件名称:基于自适应Kalman滤波的改进PSO算法 (2015年)
文件大小:816KB
文件格式:PDF
更新时间:2024-06-14 18:33:56
工程技术 论文
针对基于Kalman滤波的PSO算法在设计与应用过程中存在的不足,提出了基于自适应Kalman滤波的改进PSO算法。利用粒子群状态空间Markov链模型,建立粒子群系统状态方程;采用粒子的速度和位置作为观测量,构建观测方程;引入记忆衰减因子动态调整Kalman滤波模型参数及噪声方差阵,降低模型误差,提高粒子的位置估计精度。仿真实验表明:改进的PSO算法无论在优化精度、收敛速度,还是在稳定性方面都有很大的改进和提高,这就有效避免了粒子的“早熟”收敛问题;尤其在处理复杂多峰问题上,改进算法表现出很明显的优越性