文件名称:评估子集类区分能力的特征选择方法 (2011年)
文件大小:639KB
文件格式:PDF
更新时间:2024-07-02 10:29:55
自然科学 论文
为了克服Relief选择前k个特征作为约简子集所存在的原始特征空间中的近邻在约简后的特征子空间中不一定还是近邻的问题,提出了一种在特征子空间中评价候选特征子集类别区分能力的方法,并结合最好优先特征搜索策略提出了一种新的特征子集选取方法.在12个UCI(加州大学欧文分校)数据集和1个老年痴呆实测数据集上,就约减能力对所提方法与其他3种经典特征选择方法进行了比较,并用决策树、逻辑回归模型详细比较了分类效果.实验结果表明:所提方法不仅能够选出特征数目较少的特征子集,而且特征子集的分类效果良好.