股票选择和投资组合优化的长期短期记忆方法-研究论文

时间:2024-06-29 17:40:24
【文件属性】:

文件名称:股票选择和投资组合优化的长期短期记忆方法-研究论文

文件大小:783KB

文件格式:PDF

更新时间:2024-06-29 17:40:24

portfolio optimization artificial

在本文中,我们展示了如何将长短期记忆 (LSTM) 类神经网络用于股票选择和投资组合优化。 我们使用 LSTM 网络来预测股票运动的方向和股票价格代理度量,并将这些用于股票选择和 Markowitz 均值方差投资组合优化框架。 使用印度 SENSEX 股票数据构建了四种类型的 LSTM 模型——个体模型和集合模型,每种模型都使用批量和增量学习方法进行训练。 我们在投资组合优化阶段利用入围股票中股票运动方向分类的准确性。 在投资组合优化阶段,除了标准的 Markowitz 公式之外,还构建了多样化和卖空的 Markowitz 公式。 我们还建议使用 LSTM 分类精度的补充作为风险度量,代替 Markowitz 框架内的协方差矩阵。 LSTM 构建和投资组合优化公式类型的上述每种组合的结果都针对 SENSEX 和标准最优 Markowitz 投资组合进行了基准测试,没有股票选择。 我们还推导出具有股票价格预测因子比平均股票价格更准确的 Markowitz 公式优于标准 Markowitz 公式的条件。


网友评论