文件名称:论文研究-基于聚类的快速支持向量机训练算法.pdf
文件大小:335KB
文件格式:PDF
更新时间:2022-08-11 16:36:53
二次规划,无监督聚类,权值,距离阈值,潜在支持向量
支持向量机(support vector machine, SVM)具有良好的泛化性能而被广泛应用于机器学习及模式识别领域。然而,当训练集较大时,训练SVM需要极大的时间及空间开销。另一方面,SVM训练所得的判定函数取决于支持向量,使用支持向量集取代训练样本集进行学习,可以在不影响结果分类器分类精度的同时缩短训练时间。采用混合方法来削减训练数据集,实现潜在支持向量的选择,从而降低SVM训练所需的时间及空间复杂度。实验结果表明,该算法在极大提高SVM训练速度的同时,基本维持了原始分类器的泛化性能。