文件名称:基于RBF神经网络的软基沉降预测研究 (2005年)
文件大小:285KB
文件格式:PDF
更新时间:2024-05-15 04:49:14
自然科学 论文
将神经网络理论引入软基沉降预测领域.借助自控领域信号处理的思想,应用改进后的径向基函数神经网络的映射模式进行软基沉降的短期预测;软基沉降的长期预测实质上为基于神经网络的多维欧氏空间的曲面拟合问题,将地基压缩层从上到下分成若干段,每段的土性指标按段内各层土在段中的长度取加权平均作为系统的输入,将某个沉降模型的沉降曲线参数作为系统的输出,可以预测后期沉降曲线走势.实践表明,建立的基于RBF神经网络的软基沉降短期预测和长期预测模型是可行的,只要有足够多的训练样本,长期预测可以达到比较精确的预测效果.表5,参9.