文件名称:论文研究-隐私保护轨迹数据发布的l-差异性算法.pdf
文件大小:626KB
文件格式:PDF
更新时间:2022-09-27 22:55:26
论文研究
针对基于传统的k-匿名模型下移动用户轨迹数据发布隐私保护算法有可能将相似度极高的轨迹匿名在同一个匿名集中从而导致可能出现的用户个人隐私泄露风险的不足。设计了一种新的轨迹数据发布隐私保护算法。该算法基于k-匿名模型,将轨迹所在的二维空间划分成大小相等的单元格,之后将由轨迹数据得到对应轨迹经过的单元格序列,从而定义轨迹k-匿名下的l-差异性,算法在满足k-匿名模型的前提下通过聚类的方法构建匿名集,并保证匿名集中的轨迹满足l-差异性标准,以达到降低由于差异性不足引起用户隐私泄露的风险的目的。实验结果表明,该算法是可行有效的。