文件名称:论文研究-多维敏感属性隐私保护数据发布方法.pdf
文件大小:547KB
文件格式:PDF
更新时间:2022-09-26 19:37:02
论文研究
在匿名数据发布中,当敏感属性为多维时,攻击者有可能能够获取一维或几维敏感属性信息,并且结合准标识符信息对其他敏感属性进行推理攻击。针对此问题提出(Dou-l)-匿名模型,更好地保护了敏感信息。基于多维桶和分解思想,提出(Dou-l)-匿名算法,使得即便攻击者掌握了部分敏感数据,仍然能较好地保护其他敏感属性数据的隐私安全性。实际数据实验证明,算法可以较好地均衡发布数据的安全性和可用性。