文件名称:使用卷积神经网络 (CNN) 进行智能阿尔茨海默病预测-研究论文
文件大小:716KB
文件格式:PDF
更新时间:2024-06-29 21:15:40
Alzheimer’s Disease Electroencephalogram
深度学习是机器学习的一个子集,旨在用类似于人类的逻辑持续分析数据。 它使用称为人工神经网络 (ANN) 的算法的分层结构。 它们主要用于医学诊断,以做出疾病预测、机器人手术和放射治疗等关键决策。 疾病预测包括识别和分类阿尔茨海默病。 它是痴呆症的最常见原因,影响全球约 4600 万人。 该病有几个阶段,分为轻度和重度。 症状包括记忆信息的能力下降、口语和写作能力下降。 许多机器学习算法技术如决策树分类器、独立分量分析、线性判别分析(LDA)被用来根据疾病的阶段预测疾病,但识别信号阶段的精度并不高。 在这项工作中,提出了一种基于深度学习的技术,该技术通过使用卷积神经网络 (CNN) 来提高分类的准确性。 这项工作分析脑电图 (EEG) 信号,使用快速傅立叶变换 (FFT) 提取特征并通过 CNN 对疾病进行分类。