文件名称:论文研究-基于Bagging集成学习的字符识别方法.pdf
文件大小:494KB
文件格式:PDF
更新时间:2022-09-27 16:34:16
论文研究
针对字符识别对象的多样性,提出了一种基于Bagging集成的字符识别模型,解决了识别模型对部分字符识别的偏好现象。采用Bagging采样策略形成不同的数据子集,在此基础上用决策树算法训练形成多个基分类器,用多数投票机制对基分类器预测结果集成输出。理论分析与仿真实验结果表明,所提模型相比其他分类方法具有更好的分类能力。
文件名称:论文研究-基于Bagging集成学习的字符识别方法.pdf
文件大小:494KB
文件格式:PDF
更新时间:2022-09-27 16:34:16
论文研究
针对字符识别对象的多样性,提出了一种基于Bagging集成的字符识别模型,解决了识别模型对部分字符识别的偏好现象。采用Bagging采样策略形成不同的数据子集,在此基础上用决策树算法训练形成多个基分类器,用多数投票机制对基分类器预测结果集成输出。理论分析与仿真实验结果表明,所提模型相比其他分类方法具有更好的分类能力。