I have the following DataFrame:
我有以下DataFrame:
In [1]:
import pandas as pd
df = pd.DataFrame({'a': [1,2,3], 'b': [2,3,4], 'c':['dd','ee','ff'], 'd':[5,9,1]})
df
Out [1]:
a b c d
0 1 2 dd 5
1 2 3 ee 9
2 3 4 ff 1
I would like to add a column 'e'
which is the sum of column 'a'
, 'b'
and 'd'
.
我想添加一个列'e',它是'a','b'和'd'列的总和。
Going across forums, I thought something like this would work:
穿过论坛,我觉得这样的事情会起作用:
df['e'] = df[['a','b','d']].map(sum)
But no!
但不是!
I would like to realize the operation having the list of columns ['a','b','d']
and df
as inputs.
我想实现具有列列表['a','b','d']和df作为输入的操作。
4 个解决方案
#1
118
You can just sum
and set param axis=1
to sum the rows, this will ignore none numeric columns:
你可以求和并设置param axis = 1来对行进行求和,这将忽略无数字列:
In [91]:
df = pd.DataFrame({'a': [1,2,3], 'b': [2,3,4], 'c':['dd','ee','ff'], 'd':[5,9,1]})
df['e'] = df.sum(axis=1)
df
Out[91]:
a b c d e
0 1 2 dd 5 8
1 2 3 ee 9 14
2 3 4 ff 1 8
If you want to just sum specific columns then you can create a list of the columns and remove the ones you are not interested in:
如果您只想对特定列求和,那么您可以创建列的列表并删除您不感兴趣的列:
In [98]:
col_list= list(df)
col_list.remove('d')
col_list
Out[98]:
['a', 'b', 'c']
In [99]:
df['e'] = df[col_list].sum(axis=1)
df
Out[99]:
a b c d e
0 1 2 dd 5 3
1 2 3 ee 9 5
2 3 4 ff 1 7
#2
18
If you have just a few columns to sum, you can write:
如果你只有几列要总和,你可以写:
df['e'] = df['a'] + df['b'] + df['d']
This creates new column e
with the values:
这将创建具有以下值的新列e:
a b c d e
0 1 2 dd 5 8
1 2 3 ee 9 14
2 3 4 ff 1 8
For longer lists of columns, EdChum's answer is preferred.
对于较长的列列表,EdChum的答案是首选。
#3
2
This is a simpler way using iloc to select which columns to sum:
这是一种使用iloc选择要汇总的列的更简单方法:
df['f']=df.iloc[:,0:2].sum(axis=1)
df['g']=df.iloc[:,[0,1]].sum(axis=1)
df['h']=df.iloc[:,[0,3]].sum(axis=1)
Produces:
生产:
a b c d e f g h
0 1 2 dd 5 8 3 3 6
1 2 3 ee 9 14 5 5 11
2 3 4 ff 1 8 7 7 4
I can't find a way to combine a range and specific columns that works e.g. something like:
我找不到一种方法来组合范围和特定列,例如就像是:
df['i']=df.iloc[:,[[0:2],3]].sum(axis=1)
df['i']=df.iloc[:,[0:2,3]].sum(axis=1)
#4
0
Create a list of column names you want to add up.
创建要添加的列名列表。
df['total']=df.loc[:,list_name].sum(axis=1)
If you want the sum for certain rows, specify the rows using ':'
如果您想要某些行的总和,请使用“:”指定行
#1
118
You can just sum
and set param axis=1
to sum the rows, this will ignore none numeric columns:
你可以求和并设置param axis = 1来对行进行求和,这将忽略无数字列:
In [91]:
df = pd.DataFrame({'a': [1,2,3], 'b': [2,3,4], 'c':['dd','ee','ff'], 'd':[5,9,1]})
df['e'] = df.sum(axis=1)
df
Out[91]:
a b c d e
0 1 2 dd 5 8
1 2 3 ee 9 14
2 3 4 ff 1 8
If you want to just sum specific columns then you can create a list of the columns and remove the ones you are not interested in:
如果您只想对特定列求和,那么您可以创建列的列表并删除您不感兴趣的列:
In [98]:
col_list= list(df)
col_list.remove('d')
col_list
Out[98]:
['a', 'b', 'c']
In [99]:
df['e'] = df[col_list].sum(axis=1)
df
Out[99]:
a b c d e
0 1 2 dd 5 3
1 2 3 ee 9 5
2 3 4 ff 1 7
#2
18
If you have just a few columns to sum, you can write:
如果你只有几列要总和,你可以写:
df['e'] = df['a'] + df['b'] + df['d']
This creates new column e
with the values:
这将创建具有以下值的新列e:
a b c d e
0 1 2 dd 5 8
1 2 3 ee 9 14
2 3 4 ff 1 8
For longer lists of columns, EdChum's answer is preferred.
对于较长的列列表,EdChum的答案是首选。
#3
2
This is a simpler way using iloc to select which columns to sum:
这是一种使用iloc选择要汇总的列的更简单方法:
df['f']=df.iloc[:,0:2].sum(axis=1)
df['g']=df.iloc[:,[0,1]].sum(axis=1)
df['h']=df.iloc[:,[0,3]].sum(axis=1)
Produces:
生产:
a b c d e f g h
0 1 2 dd 5 8 3 3 6
1 2 3 ee 9 14 5 5 11
2 3 4 ff 1 8 7 7 4
I can't find a way to combine a range and specific columns that works e.g. something like:
我找不到一种方法来组合范围和特定列,例如就像是:
df['i']=df.iloc[:,[[0:2],3]].sum(axis=1)
df['i']=df.iloc[:,[0:2,3]].sum(axis=1)
#4
0
Create a list of column names you want to add up.
创建要添加的列名列表。
df['total']=df.loc[:,list_name].sum(axis=1)
If you want the sum for certain rows, specify the rows using ':'
如果您想要某些行的总和,请使用“:”指定行