I'm trying to work with fractions in Java.
我在尝试用Java的分数。
I want to implement arithmetic functions. For this, I will first require a way to normalize the functions. I know I can't add 1/6 and 1/2 until I have a common denominator. I will have to add 1/6 and 3/6. A naive approach would have me add 2/12 and 6/12 and then reduce. How can I achieve a common denominator with the least performance penalty? What algorithm is best for this?
我想实现算术函数。为此,首先需要一种方法使函数规范化。我知道我不能加上1/6和1/2直到我有一个公分母。我要加上1/6和3/6。一个简单的方法会让我加上2/12和6/12然后减少。我怎样才能用最少的性能惩罚达到公分母?什么算法是最好的?
Version 8 (thanks to hstoerr):
版本8(感谢hstoerr):
Improvements include:
改进包括:
- the equals() method is now consistent with the compareTo() method
- equals()方法现在与compareTo()方法一致。
final class Fraction extends Number {
private int numerator;
private int denominator;
public Fraction(int numerator, int denominator) {
if(denominator == 0) {
throw new IllegalArgumentException("denominator is zero");
}
if(denominator < 0) {
numerator *= -1;
denominator *= -1;
}
this.numerator = numerator;
this.denominator = denominator;
}
public Fraction(int numerator) {
this.numerator = numerator;
this.denominator = 1;
}
public int getNumerator() {
return this.numerator;
}
public int getDenominator() {
return this.denominator;
}
public byte byteValue() {
return (byte) this.doubleValue();
}
public double doubleValue() {
return ((double) numerator)/((double) denominator);
}
public float floatValue() {
return (float) this.doubleValue();
}
public int intValue() {
return (int) this.doubleValue();
}
public long longValue() {
return (long) this.doubleValue();
}
public short shortValue() {
return (short) this.doubleValue();
}
public boolean equals(Fraction frac) {
return this.compareTo(frac) == 0;
}
public int compareTo(Fraction frac) {
long t = this.getNumerator() * frac.getDenominator();
long f = frac.getNumerator() * this.getDenominator();
int result = 0;
if(t>f) {
result = 1;
}
else if(f>t) {
result = -1;
}
return result;
}
}
I have removed all previous versions. My thanks to:
我已经删除了所有以前的版本。我的感谢:
- Dave Ray
- 戴夫·雷
- cletus
- 克里特斯
- duffymo
- duffymo
- James
- 詹姆斯
- Milhous
- Milhous
- Oscar Reyes
- 奥斯卡雷耶斯
- Jason S
- 杰森年代
- Francisco Canedo
- 旧金山Canedo
- Outlaw Programmer
- 禁止程序员
- Beska
- Beska
25 个解决方案
#1
59
It just so happens that I wrote a BigFraction class not too long ago, for Project Euler problems. It keeps a BigInteger numerator and denominator, so it'll never overflow. But it'll be a tad slow for a lot of operations that you know will never overflow.. anyway, use it if you want it. I've been dying to show this off somehow. :)
碰巧我不久前写了一个BigFraction类,用于Project Euler问题。它保持一个整数分子和分母,所以它不会溢出。但是对于很多你知道永远不会溢出的操作来说,这将是一个缓慢的过程。不管怎样,如果你想要的话,就用它吧。我一直想以某种方式展示它。:)
Edit: Latest and greatest version of this code, including unit tests is now hosted on GitHub and also available via Maven Central. I'm leaving my original code here so that this answer isn't just a link...
编辑:这段代码的最新和最伟大的版本,包括单元测试现在在GitHub上,也可以通过Maven中心提供。我把原来的代码留在这里,所以这个答案不仅仅是一个链接…
import java.math.*;
/**
* Arbitrary-precision fractions, utilizing BigIntegers for numerator and
* denominator. Fraction is always kept in lowest terms. Fraction is
* immutable, and guaranteed not to have a null numerator or denominator.
* Denominator will always be positive (so sign is carried by numerator,
* and a zero-denominator is impossible).
*/
public final class BigFraction extends Number implements Comparable<BigFraction>
{
private static final long serialVersionUID = 1L; //because Number is Serializable
private final BigInteger numerator;
private final BigInteger denominator;
public final static BigFraction ZERO = new BigFraction(BigInteger.ZERO, BigInteger.ONE, true);
public final static BigFraction ONE = new BigFraction(BigInteger.ONE, BigInteger.ONE, true);
/**
* Constructs a BigFraction with given numerator and denominator. Fraction
* will be reduced to lowest terms. If fraction is negative, negative sign will
* be carried on numerator, regardless of how the values were passed in.
*/
public BigFraction(BigInteger numerator, BigInteger denominator)
{
if(numerator == null)
throw new IllegalArgumentException("Numerator is null");
if(denominator == null)
throw new IllegalArgumentException("Denominator is null");
if(denominator.equals(BigInteger.ZERO))
throw new ArithmeticException("Divide by zero.");
//only numerator should be negative.
if(denominator.signum() < 0)
{
numerator = numerator.negate();
denominator = denominator.negate();
}
//create a reduced fraction
BigInteger gcd = numerator.gcd(denominator);
this.numerator = numerator.divide(gcd);
this.denominator = denominator.divide(gcd);
}
/**
* Constructs a BigFraction from a whole number.
*/
public BigFraction(BigInteger numerator)
{
this(numerator, BigInteger.ONE, true);
}
public BigFraction(long numerator, long denominator)
{
this(BigInteger.valueOf(numerator), BigInteger.valueOf(denominator));
}
public BigFraction(long numerator)
{
this(BigInteger.valueOf(numerator), BigInteger.ONE, true);
}
/**
* Constructs a BigFraction from a floating-point number.
*
* Warning: round-off error in IEEE floating point numbers can result
* in answers that are unexpected. For example,
* System.out.println(new BigFraction(1.1))
* will print:
* 2476979795053773/2251799813685248
*
* This is because 1.1 cannot be expressed exactly in binary form. The
* given fraction is exactly equal to the internal representation of
* the double-precision floating-point number. (Which, for 1.1, is:
* (-1)^0 * 2^0 * (1 + 0x199999999999aL / 0x10000000000000L).)
*
* NOTE: In many cases, BigFraction(Double.toString(d)) may give a result
* closer to what the user expects.
*/
public BigFraction(double d)
{
if(Double.isInfinite(d))
throw new IllegalArgumentException("double val is infinite");
if(Double.isNaN(d))
throw new IllegalArgumentException("double val is NaN");
//special case - math below won't work right for 0.0 or -0.0
if(d == 0)
{
numerator = BigInteger.ZERO;
denominator = BigInteger.ONE;
return;
}
final long bits = Double.doubleToLongBits(d);
final int sign = (int)(bits >> 63) & 0x1;
final int exponent = ((int)(bits >> 52) & 0x7ff) - 0x3ff;
final long mantissa = bits & 0xfffffffffffffL;
//number is (-1)^sign * 2^(exponent) * 1.mantissa
BigInteger tmpNumerator = BigInteger.valueOf(sign==0 ? 1 : -1);
BigInteger tmpDenominator = BigInteger.ONE;
//use shortcut: 2^x == 1 << x. if x is negative, shift the denominator
if(exponent >= 0)
tmpNumerator = tmpNumerator.multiply(BigInteger.ONE.shiftLeft(exponent));
else
tmpDenominator = tmpDenominator.multiply(BigInteger.ONE.shiftLeft(-exponent));
//1.mantissa == 1 + mantissa/2^52 == (2^52 + mantissa)/2^52
tmpDenominator = tmpDenominator.multiply(BigInteger.valueOf(0x10000000000000L));
tmpNumerator = tmpNumerator.multiply(BigInteger.valueOf(0x10000000000000L + mantissa));
BigInteger gcd = tmpNumerator.gcd(tmpDenominator);
numerator = tmpNumerator.divide(gcd);
denominator = tmpDenominator.divide(gcd);
}
/**
* Constructs a BigFraction from two floating-point numbers.
*
* Warning: round-off error in IEEE floating point numbers can result
* in answers that are unexpected. See BigFraction(double) for more
* information.
*
* NOTE: In many cases, BigFraction(Double.toString(numerator) + "/" + Double.toString(denominator))
* may give a result closer to what the user expects.
*/
public BigFraction(double numerator, double denominator)
{
if(denominator == 0)
throw new ArithmeticException("Divide by zero.");
BigFraction tmp = new BigFraction(numerator).divide(new BigFraction(denominator));
this.numerator = tmp.numerator;
this.denominator = tmp.denominator;
}
/**
* Constructs a new BigFraction from the given BigDecimal object.
*/
public BigFraction(BigDecimal d)
{
this(d.scale() < 0 ? d.unscaledValue().multiply(BigInteger.TEN.pow(-d.scale())) : d.unscaledValue(),
d.scale() < 0 ? BigInteger.ONE : BigInteger.TEN.pow(d.scale()));
}
public BigFraction(BigDecimal numerator, BigDecimal denominator)
{
if(denominator.equals(BigDecimal.ZERO))
throw new ArithmeticException("Divide by zero.");
BigFraction tmp = new BigFraction(numerator).divide(new BigFraction(denominator));
this.numerator = tmp.numerator;
this.denominator = tmp.denominator;
}
/**
* Constructs a BigFraction from a String. Expected format is numerator/denominator,
* but /denominator part is optional. Either numerator or denominator may be a floating-
* point decimal number, which in the same format as a parameter to the
* <code>BigDecimal(String)</code> constructor.
*
* @throws NumberFormatException if the string cannot be properly parsed.
*/
public BigFraction(String s)
{
int slashPos = s.indexOf('/');
if(slashPos < 0)
{
BigFraction res = new BigFraction(new BigDecimal(s));
this.numerator = res.numerator;
this.denominator = res.denominator;
}
else
{
BigDecimal num = new BigDecimal(s.substring(0, slashPos));
BigDecimal den = new BigDecimal(s.substring(slashPos+1, s.length()));
BigFraction res = new BigFraction(num, den);
this.numerator = res.numerator;
this.denominator = res.denominator;
}
}
/**
* Returns this + f.
*/
public BigFraction add(BigFraction f)
{
if(f == null)
throw new IllegalArgumentException("Null argument");
//n1/d1 + n2/d2 = (n1*d2 + d1*n2)/(d1*d2)
return new BigFraction(numerator.multiply(f.denominator).add(denominator.multiply(f.numerator)),
denominator.multiply(f.denominator));
}
/**
* Returns this + b.
*/
public BigFraction add(BigInteger b)
{
if(b == null)
throw new IllegalArgumentException("Null argument");
//n1/d1 + n2 = (n1 + d1*n2)/d1
return new BigFraction(numerator.add(denominator.multiply(b)),
denominator, true);
}
/**
* Returns this + n.
*/
public BigFraction add(long n)
{
return add(BigInteger.valueOf(n));
}
/**
* Returns this - f.
*/
public BigFraction subtract(BigFraction f)
{
if(f == null)
throw new IllegalArgumentException("Null argument");
return new BigFraction(numerator.multiply(f.denominator).subtract(denominator.multiply(f.numerator)),
denominator.multiply(f.denominator));
}
/**
* Returns this - b.
*/
public BigFraction subtract(BigInteger b)
{
if(b == null)
throw new IllegalArgumentException("Null argument");
return new BigFraction(numerator.subtract(denominator.multiply(b)),
denominator, true);
}
/**
* Returns this - n.
*/
public BigFraction subtract(long n)
{
return subtract(BigInteger.valueOf(n));
}
/**
* Returns this * f.
*/
public BigFraction multiply(BigFraction f)
{
if(f == null)
throw new IllegalArgumentException("Null argument");
return new BigFraction(numerator.multiply(f.numerator), denominator.multiply(f.denominator));
}
/**
* Returns this * b.
*/
public BigFraction multiply(BigInteger b)
{
if(b == null)
throw new IllegalArgumentException("Null argument");
return new BigFraction(numerator.multiply(b), denominator);
}
/**
* Returns this * n.
*/
public BigFraction multiply(long n)
{
return multiply(BigInteger.valueOf(n));
}
/**
* Returns this / f.
*/
public BigFraction divide(BigFraction f)
{
if(f == null)
throw new IllegalArgumentException("Null argument");
if(f.numerator.equals(BigInteger.ZERO))
throw new ArithmeticException("Divide by zero");
return new BigFraction(numerator.multiply(f.denominator), denominator.multiply(f.numerator));
}
/**
* Returns this / b.
*/
public BigFraction divide(BigInteger b)
{
if(b == null)
throw new IllegalArgumentException("Null argument");
if(b.equals(BigInteger.ZERO))
throw new ArithmeticException("Divide by zero");
return new BigFraction(numerator, denominator.multiply(b));
}
/**
* Returns this / n.
*/
public BigFraction divide(long n)
{
return divide(BigInteger.valueOf(n));
}
/**
* Returns this^exponent.
*/
public BigFraction pow(int exponent)
{
if(exponent == 0)
return BigFraction.ONE;
else if (exponent == 1)
return this;
else if (exponent < 0)
return new BigFraction(denominator.pow(-exponent), numerator.pow(-exponent), true);
else
return new BigFraction(numerator.pow(exponent), denominator.pow(exponent), true);
}
/**
* Returns 1/this.
*/
public BigFraction reciprocal()
{
if(this.numerator.equals(BigInteger.ZERO))
throw new ArithmeticException("Divide by zero");
return new BigFraction(denominator, numerator, true);
}
/**
* Returns the complement of this fraction, which is equal to 1 - this.
* Useful for probabilities/statistics.
*/
public BigFraction complement()
{
return new BigFraction(denominator.subtract(numerator), denominator, true);
}
/**
* Returns -this.
*/
public BigFraction negate()
{
return new BigFraction(numerator.negate(), denominator, true);
}
/**
* Returns -1, 0, or 1, representing the sign of this fraction.
*/
public int signum()
{
return numerator.signum();
}
/**
* Returns the absolute value of this.
*/
public BigFraction abs()
{
return (signum() < 0 ? negate() : this);
}
/**
* Returns a string representation of this, in the form
* numerator/denominator.
*/
public String toString()
{
return numerator.toString() + "/" + denominator.toString();
}
/**
* Returns if this object is equal to another object.
*/
public boolean equals(Object o)
{
if(!(o instanceof BigFraction))
return false;
BigFraction f = (BigFraction)o;
return numerator.equals(f.numerator) && denominator.equals(f.denominator);
}
/**
* Returns a hash code for this object.
*/
public int hashCode()
{
//using the method generated by Eclipse, but streamlined a bit..
return (31 + numerator.hashCode())*31 + denominator.hashCode();
}
/**
* Returns a negative, zero, or positive number, indicating if this object
* is less than, equal to, or greater than f, respectively.
*/
public int compareTo(BigFraction f)
{
if(f == null)
throw new IllegalArgumentException("Null argument");
//easy case: this and f have different signs
if(signum() != f.signum())
return signum() - f.signum();
//next easy case: this and f have the same denominator
if(denominator.equals(f.denominator))
return numerator.compareTo(f.numerator);
//not an easy case, so first make the denominators equal then compare the numerators
return numerator.multiply(f.denominator).compareTo(denominator.multiply(f.numerator));
}
/**
* Returns the smaller of this and f.
*/
public BigFraction min(BigFraction f)
{
if(f == null)
throw new IllegalArgumentException("Null argument");
return (this.compareTo(f) <= 0 ? this : f);
}
/**
* Returns the maximum of this and f.
*/
public BigFraction max(BigFraction f)
{
if(f == null)
throw new IllegalArgumentException("Null argument");
return (this.compareTo(f) >= 0 ? this : f);
}
/**
* Returns a positive BigFraction, greater than or equal to zero, and less than one.
*/
public static BigFraction random()
{
return new BigFraction(Math.random());
}
public final BigInteger getNumerator() { return numerator; }
public final BigInteger getDenominator() { return denominator; }
//implementation of Number class. may cause overflow.
public byte byteValue() { return (byte) Math.max(Byte.MIN_VALUE, Math.min(Byte.MAX_VALUE, longValue())); }
public short shortValue() { return (short)Math.max(Short.MIN_VALUE, Math.min(Short.MAX_VALUE, longValue())); }
public int intValue() { return (int) Math.max(Integer.MIN_VALUE, Math.min(Integer.MAX_VALUE, longValue())); }
public long longValue() { return Math.round(doubleValue()); }
public float floatValue() { return (float)doubleValue(); }
public double doubleValue() { return toBigDecimal(18).doubleValue(); }
/**
* Returns a BigDecimal representation of this fraction. If possible, the
* returned value will be exactly equal to the fraction. If not, the BigDecimal
* will have a scale large enough to hold the same number of significant figures
* as both numerator and denominator, or the equivalent of a double-precision
* number, whichever is more.
*/
public BigDecimal toBigDecimal()
{
//Implementation note: A fraction can be represented exactly in base-10 iff its
//denominator is of the form 2^a * 5^b, where a and b are nonnegative integers.
//(In other words, if there are no prime factors of the denominator except for
//2 and 5, or if the denominator is 1). So to determine if this denominator is
//of this form, continually divide by 2 to get the number of 2's, and then
//continually divide by 5 to get the number of 5's. Afterward, if the denominator
//is 1 then there are no other prime factors.
//Note: number of 2's is given by the number of trailing 0 bits in the number
int twos = denominator.getLowestSetBit();
BigInteger tmpDen = denominator.shiftRight(twos); // x / 2^n === x >> n
final BigInteger FIVE = BigInteger.valueOf(5);
int fives = 0;
BigInteger[] divMod = null;
//while(tmpDen % 5 == 0) { fives++; tmpDen /= 5; }
while(BigInteger.ZERO.equals((divMod = tmpDen.divideAndRemainder(FIVE))[1]))
{
fives++;
tmpDen = divMod[0];
}
if(BigInteger.ONE.equals(tmpDen))
{
//This fraction will terminate in base 10, so it can be represented exactly as
//a BigDecimal. We would now like to make the fraction of the form
//unscaled / 10^scale. We know that 2^x * 5^x = 10^x, and our denominator is
//in the form 2^twos * 5^fives. So use max(twos, fives) as the scale, and
//multiply the numerator and deminator by the appropriate number of 2's or 5's
//such that the denominator is of the form 2^scale * 5^scale. (Of course, we
//only have to actually multiply the numerator, since all we need for the
//BigDecimal constructor is the scale.
BigInteger unscaled = numerator;
int scale = Math.max(twos, fives);
if(twos < fives)
unscaled = unscaled.shiftLeft(fives - twos); //x * 2^n === x << n
else if (fives < twos)
unscaled = unscaled.multiply(FIVE.pow(twos - fives));
return new BigDecimal(unscaled, scale);
}
//else: this number will repeat infinitely in base-10. So try to figure out
//a good number of significant digits. Start with the number of digits required
//to represent the numerator and denominator in base-10, which is given by
//bitLength / log[2](10). (bitLenth is the number of digits in base-2).
final double LG10 = 3.321928094887362; //Precomputed ln(10)/ln(2), a.k.a. log[2](10)
int precision = Math.max(numerator.bitLength(), denominator.bitLength());
precision = (int)Math.ceil(precision / LG10);
//If the precision is less than 18 digits, use 18 digits so that the number
//will be at least as accurate as a cast to a double. For example, with
//the fraction 1/3, precision will be 1, giving a result of 0.3. This is
//quite a bit different from what a user would expect.
if(precision < 18)
precision = 18;
return toBigDecimal(precision);
}
/**
* Returns a BigDecimal representation of this fraction, with a given precision.
* @param precision the number of significant figures to be used in the result.
*/
public BigDecimal toBigDecimal(int precision)
{
return new BigDecimal(numerator).divide(new BigDecimal(denominator), new MathContext(precision, RoundingMode.HALF_EVEN));
}
//--------------------------------------------------------------------------
// PRIVATE FUNCTIONS
//--------------------------------------------------------------------------
/**
* Private constructor, used when you can be certain that the fraction is already in
* lowest terms. No check is done to reduce numerator/denominator. A check is still
* done to maintain a positive denominator.
*
* @param throwaway unused variable, only here to signal to the compiler that this
* constructor should be used.
*/
private BigFraction(BigInteger numerator, BigInteger denominator, boolean throwaway)
{
if(denominator.signum() < 0)
{
this.numerator = numerator.negate();
this.denominator = denominator.negate();
}
else
{
this.numerator = numerator;
this.denominator = denominator;
}
}
}
#2
56
- Make it immutable;
- 让它不变的;
- Make it canonical, meaning 6/4 becomes 3/2 (greatest common divisor algorithm is useful for this);
- 使它规范,意味着6/4变成3/2(最大公约数算法对这个有用);
- Call it Rational, since what you're representing is a rational number;
- 把它称为理性,因为你所代表的是一个理性的数字;
- You could use
BigInteger
to store arbitrarilyy-precise values. If not that thenlong
, which has an easier implementation; - 您可以使用BigInteger来存储任意精确的值。如果不是这样的话,那么很长,执行起来更容易;
- Make the denominator always positive. Sign should be carried by the numerator;
- 分母总是正的。符号应由分子携带;
- Extend
Number
; - 扩展数量;
- Implement
Comparable<T>
; - 实现类似< T >;
- Implement
equals()
andhashCode()
; - 实现equals()和hashCode();
- Add factory method for a number represented by a
String
; - 为以字符串表示的数字添加工厂方法;
- Add some convenience factory methods;
- 添加一些便利的工厂方法;
- Add a
toString()
; and - 添加一个toString();和
- Make it
Serializable
. - 可序列化的。
In fact, try this on for size. It runs but may have some issues:
事实上,试试这个尺寸。它运行但可能存在一些问题:
public class BigRational extends Number implements Comparable<BigRational>, Serializable {
public final static BigRational ZERO = new BigRational(BigInteger.ZERO, BigInteger.ONE);
private final static long serialVersionUID = 1099377265582986378L;
private final BigInteger numerator, denominator;
private BigRational(BigInteger numerator, BigInteger denominator) {
this.numerator = numerator;
this.denominator = denominator;
}
private static BigRational canonical(BigInteger numerator, BigInteger denominator, boolean checkGcd) {
if (denominator.signum() == 0) {
throw new IllegalArgumentException("denominator is zero");
}
if (numerator.signum() == 0) {
return ZERO;
}
if (denominator.signum() < 0) {
numerator = numerator.negate();
denominator = denominator.negate();
}
if (checkGcd) {
BigInteger gcd = numerator.gcd(denominator);
if (!gcd.equals(BigInteger.ONE)) {
numerator = numerator.divide(gcd);
denominator = denominator.divide(gcd);
}
}
return new BigRational(numerator, denominator);
}
public static BigRational getInstance(BigInteger numerator, BigInteger denominator) {
return canonical(numerator, denominator, true);
}
public static BigRational getInstance(long numerator, long denominator) {
return canonical(new BigInteger("" + numerator), new BigInteger("" + denominator), true);
}
public static BigRational getInstance(String numerator, String denominator) {
return canonical(new BigInteger(numerator), new BigInteger(denominator), true);
}
public static BigRational valueOf(String s) {
Pattern p = Pattern.compile("(-?\\d+)(?:.(\\d+)?)?0*(?:e(-?\\d+))?");
Matcher m = p.matcher(s);
if (!m.matches()) {
throw new IllegalArgumentException("Unknown format '" + s + "'");
}
// this translates 23.123e5 to 25,123 / 1000 * 10^5 = 2,512,300 / 1 (GCD)
String whole = m.group(1);
String decimal = m.group(2);
String exponent = m.group(3);
String n = whole;
// 23.123 => 23123
if (decimal != null) {
n += decimal;
}
BigInteger numerator = new BigInteger(n);
// exponent is an int because BigInteger.pow() takes an int argument
// it gets more difficult if exponent needs to be outside {-2 billion,2 billion}
int exp = exponent == null ? 0 : Integer.valueOf(exponent);
int decimalPlaces = decimal == null ? 0 : decimal.length();
exp -= decimalPlaces;
BigInteger denominator;
if (exp < 0) {
denominator = BigInteger.TEN.pow(-exp);
} else {
numerator = numerator.multiply(BigInteger.TEN.pow(exp));
denominator = BigInteger.ONE;
}
// done
return canonical(numerator, denominator, true);
}
// Comparable
public int compareTo(BigRational o) {
// note: this is a bit of cheat, relying on BigInteger.compareTo() returning
// -1, 0 or 1. For the more general contract of compareTo(), you'd need to do
// more checking
if (numerator.signum() != o.numerator.signum()) {
return numerator.signum() - o.numerator.signum();
} else {
// oddly BigInteger has gcd() but no lcm()
BigInteger i1 = numerator.multiply(o.denominator);
BigInteger i2 = o.numerator.multiply(denominator);
return i1.compareTo(i2); // expensive!
}
}
public BigRational add(BigRational o) {
if (o.numerator.signum() == 0) {
return this;
} else if (numerator.signum() == 0) {
return o;
} else if (denominator.equals(o.denominator)) {
return new BigRational(numerator.add(o.numerator), denominator);
} else {
return canonical(numerator.multiply(o.denominator).add(o.numerator.multiply(denominator)), denominator.multiply(o.denominator), true);
}
}
public BigRational multiply(BigRational o) {
if (numerator.signum() == 0 || o.numerator.signum( )== 0) {
return ZERO;
} else if (numerator.equals(o.denominator)) {
return canonical(o.numerator, denominator, true);
} else if (o.numerator.equals(denominator)) {
return canonical(numerator, o.denominator, true);
} else if (numerator.negate().equals(o.denominator)) {
return canonical(o.numerator.negate(), denominator, true);
} else if (o.numerator.negate().equals(denominator)) {
return canonical(numerator.negate(), o.denominator, true);
} else {
return canonical(numerator.multiply(o.numerator), denominator.multiply(o.denominator), true);
}
}
public BigInteger getNumerator() { return numerator; }
public BigInteger getDenominator() { return denominator; }
public boolean isInteger() { return numerator.signum() == 0 || denominator.equals(BigInteger.ONE); }
public BigRational negate() { return new BigRational(numerator.negate(), denominator); }
public BigRational invert() { return canonical(denominator, numerator, false); }
public BigRational abs() { return numerator.signum() < 0 ? negate() : this; }
public BigRational pow(int exp) { return canonical(numerator.pow(exp), denominator.pow(exp), true); }
public BigRational subtract(BigRational o) { return add(o.negate()); }
public BigRational divide(BigRational o) { return multiply(o.invert()); }
public BigRational min(BigRational o) { return compareTo(o) <= 0 ? this : o; }
public BigRational max(BigRational o) { return compareTo(o) >= 0 ? this : o; }
public BigDecimal toBigDecimal(int scale, RoundingMode roundingMode) {
return isInteger() ? new BigDecimal(numerator) : new BigDecimal(numerator).divide(new BigDecimal(denominator), scale, roundingMode);
}
// Number
public int intValue() { return isInteger() ? numerator.intValue() : numerator.divide(denominator).intValue(); }
public long longValue() { return isInteger() ? numerator.longValue() : numerator.divide(denominator).longValue(); }
public float floatValue() { return (float)doubleValue(); }
public double doubleValue() { return isInteger() ? numerator.doubleValue() : numerator.doubleValue() / denominator.doubleValue(); }
@Override
public String toString() { return isInteger() ? String.format("%,d", numerator) : String.format("%,d / %,d", numerator, denominator); }
@Override
public boolean equals(Object o) {
if (this == o) return true;
if (o == null || getClass() != o.getClass()) return false;
BigRational that = (BigRational) o;
if (denominator != null ? !denominator.equals(that.denominator) : that.denominator != null) return false;
if (numerator != null ? !numerator.equals(that.numerator) : that.numerator != null) return false;
return true;
}
@Override
public int hashCode() {
int result = numerator != null ? numerator.hashCode() : 0;
result = 31 * result + (denominator != null ? denominator.hashCode() : 0);
return result;
}
public static void main(String args[]) {
BigRational r1 = BigRational.valueOf("3.14e4");
BigRational r2 = BigRational.getInstance(111, 7);
dump("r1", r1);
dump("r2", r2);
dump("r1 + r2", r1.add(r2));
dump("r1 - r2", r1.subtract(r2));
dump("r1 * r2", r1.multiply(r2));
dump("r1 / r2", r1.divide(r2));
dump("r2 ^ 2", r2.pow(2));
}
public static void dump(String name, BigRational r) {
System.out.printf("%s = %s%n", name, r);
System.out.printf("%s.negate() = %s%n", name, r.negate());
System.out.printf("%s.invert() = %s%n", name, r.invert());
System.out.printf("%s.intValue() = %,d%n", name, r.intValue());
System.out.printf("%s.longValue() = %,d%n", name, r.longValue());
System.out.printf("%s.floatValue() = %,f%n", name, r.floatValue());
System.out.printf("%s.doubleValue() = %,f%n", name, r.doubleValue());
System.out.println();
}
}
Output is:
输出是:
r1 = 31,400
r1.negate() = -31,400
r1.invert() = 1 / 31,400
r1.intValue() = 31,400
r1.longValue() = 31,400
r1.floatValue() = 31,400.000000
r1.doubleValue() = 31,400.000000
r2 = 111 / 7
r2.negate() = -111 / 7
r2.invert() = 7 / 111
r2.intValue() = 15
r2.longValue() = 15
r2.floatValue() = 15.857142
r2.doubleValue() = 15.857143
r1 + r2 = 219,911 / 7
r1 + r2.negate() = -219,911 / 7
r1 + r2.invert() = 7 / 219,911
r1 + r2.intValue() = 31,415
r1 + r2.longValue() = 31,415
r1 + r2.floatValue() = 31,415.857422
r1 + r2.doubleValue() = 31,415.857143
r1 - r2 = 219,689 / 7
r1 - r2.negate() = -219,689 / 7
r1 - r2.invert() = 7 / 219,689
r1 - r2.intValue() = 31,384
r1 - r2.longValue() = 31,384
r1 - r2.floatValue() = 31,384.142578
r1 - r2.doubleValue() = 31,384.142857
r1 * r2 = 3,485,400 / 7
r1 * r2.negate() = -3,485,400 / 7
r1 * r2.invert() = 7 / 3,485,400
r1 * r2.intValue() = 497,914
r1 * r2.longValue() = 497,914
r1 * r2.floatValue() = 497,914.281250
r1 * r2.doubleValue() = 497,914.285714
r1 / r2 = 219,800 / 111
r1 / r2.negate() = -219,800 / 111
r1 / r2.invert() = 111 / 219,800
r1 / r2.intValue() = 1,980
r1 / r2.longValue() = 1,980
r1 / r2.floatValue() = 1,980.180176
r1 / r2.doubleValue() = 1,980.180180
r2 ^ 2 = 12,321 / 49
r2 ^ 2.negate() = -12,321 / 49
r2 ^ 2.invert() = 49 / 12,321
r2 ^ 2.intValue() = 251
r2 ^ 2.longValue() = 251
r2 ^ 2.floatValue() = 251.448975
r2 ^ 2.doubleValue() = 251.448980
#3
25
I'm trying to work with proper fractions in Java.
我在尝试用Java的适当分数。
Apache Commons Math has had a Fraction class for quite some time. Most times the answer to, "Boy I wish Java had something like X in the core library!" can be found under the umbrella of the Apache Commons library.
Apache Commons Math在相当长的一段时间里都有一个分数类。大多数时候,“我希望Java在核心库中有像X这样的东西”的答案可以在Apache Commons library的保护伞下找到。
#4
24
Please make it an immutable type! The value of a fraction doesn't change - a half doesn't become a third, for example. Instead of setDenominator, you could have withDenominator which returns a new fraction which has the same numerator but the specified denominator.
请让它成为不可变类型!分数的值是不变的,例如,1 / 2不等于1 / 3。而不是set分母,你可以使用分母,它返回一个新的分数,它有相同的分子,但分母是相同的。
Life is much easier with immutable types.
使用不可变类型的生活更容易。
Overriding equals and hashcode would be sensible too, so it can be used in maps and sets. Outlaw Programmer's points about arithmetic operators and string formatting are good too.
重写equals和hashcode也是明智的,因此可以在映射和集合中使用。Outlaw程序员关于算术运算符和字符串格式的观点也很好。
As a general guide, have a look at BigInteger and BigDecimal. They're not doing the same thing, but they're similar enough to give you good ideas.
作为一般指南,请查看BigInteger和BigDecimal。他们不是在做同样的事情,但是他们很相似,可以给你好的想法。
#5
7
Well, for one, I'd get rid of the setters and make Fractions immutable.
首先,我要去掉setter,使分数不变。
You'll probably also want methods to add, subtract, etc., and maybe some way to get the representation in various String formats.
您可能还需要一些方法来添加、减法等等,也许还需要一些方法来获得各种字符串格式的表示。
EDIT: I'd probably mark the fields as 'final' to signal my intent but I guess it's not a big deal...
编辑:我可能会把字段标记为“final”来表示我的意图,但我想这没什么大不了的……
#6
5
- It's kinda pointless without arithmetic methods like add() and multiply(), etc.
- 没有像add()和乘法()这样的算术方法,这是没有意义的。
- You should definitely override equals() and hashCode().
- 您绝对应该重写equals()和hashCode()。
- You should either add a method to normalize the fraction, or do it automatically. Think about whether you want 1/2 and 2/4 to be considered the same or not - this has implications for the equals(), hashCode() and compareTo() methods.
- 您应该添加一个方法使分数正常化,或者自动执行。考虑您是否希望将1/2和2/4视为相同或不相同——这对equals()、hashCode()和compareTo()方法有影响。
#7
5
I will need to order them from smallest to largest, so eventually I will need to represent them as a double also
我需要从最小到最大的顺序排列,所以最终我需要把它们表示成double。
Not strictly necessary. (In fact if you want to handle equality correctly, don't rely on double to work properly.) If b*d is positive, a/b < c/d if ad < bc. If there are negative integers involved, that can be handled appropriately...
不是完全必要的。(事实上,如果你想正确地处理平等问题,不要依赖替身来正常工作。)如果b*d是正的,a/b < c/d如果ad < bc。如果涉及到负整数,可以适当处理……
I might rewrite as:
我可以改写为:
public int compareTo(Fraction frac)
{
// we are comparing this=a/b with frac=c/d
// by multiplying both sides by bd.
// If bd is positive, then a/b < c/d <=> ad < bc.
// If bd is negative, then a/b < c/d <=> ad > bc.
// If bd is 0, then you've got other problems (either b=0 or d=0)
int d = frac.getDenominator();
long ad = (long)this.numerator * d;
long bc = (long)this.denominator * frac.getNumerator();
long diff = ((long)d*this.denominator > 0) ? (ad-bc) : (bc-ad);
return (diff > 0 ? 1 : (diff < 0 ? -1 : 0));
}
The use of long
here is to ensure there's not an overflow if you multiply two large int
s. handle If you can guarantee that the denominator is always nonnegative (if it's negative, just negate both numerator and denominator), then you can get rid of having to check whether b*d is positive and save a few steps. I'm not sure what behavior you're looking for with zero denominator.
在这里使用长时间是为了确保如果您将两个大的ints相乘,就不会发生溢出。如果你能保证分母总是非负的(如果它是负的,只是否定了分子和分母),那么你就可以消去检查b*d是否为正,并节省了一些步骤。我不知道你要找的是什么,零分母。
Not sure how performance compares to using doubles to compare. (that is, if you care about performance that much) Here's a test method I used to check. (Appears to work properly.)
不确定性能如何与使用双打比较。(也就是说,如果你很关心性能的话)这是我用来检查的测试方法。(似乎正常工作。)
public static void main(String[] args)
{
int a = Integer.parseInt(args[0]);
int b = Integer.parseInt(args[1]);
int c = Integer.parseInt(args[2]);
int d = Integer.parseInt(args[3]);
Fraction f1 = new Fraction(a,b);
Fraction f2 = new Fraction(c,d);
int rel = f1.compareTo(f2);
String relstr = "<=>";
System.out.println(a+"/"+b+" "+relstr.charAt(rel+1)+" "+c+"/"+d);
}
(p.s. you might consider restructuring to implement Comparable
or Comparator
for your class.)
(附注:你可能会考虑重组,以便为你的班级实施比较或比较。)
#8
4
One very minor improvement could potentially be to save the double value that you're computing so that you only compute it on the first access. This won't be a big win unless you're accessing this number a lot, but it's not overly difficult to do, either.
一个非常小的改进可能是保存您正在计算的双重值,以便您只在第一次访问时计算它。除非你经常访问这个数字,否则这不会是一个很大的胜利,但也不是很难。
One additional point might be the error checking you do in the denominator...you automatically change 0 to 1. Not sure if this is correct for your particular application, but in general if someone is trying to divide by 0, something is very wrong. I'd let this throw an exception (a specialized exception if you feel it's needed) rather than change the value in a seemingly arbitrary way that isn't known to the user.
一个额外的点可能是在分母上做的错误检查…你会自动把0变成1。不确定这是否适用于你的特殊应用,但一般情况下,如果有人试图除以0,那就大错特错了。如果您觉得它是需要的,那么我就让它抛出一个异常(如果您觉得它是需要的一个特殊的异常),而不是以一种看似随意的方式改变它的值,而这个方法对用户来说是未知的。
In constrast with some other comments, about adding methods to add subtract, etc...since you didn't mention needing them, I'm assuming you don't. And unless you're building a library that is really going to be used in many places or by other people, go with YAGNI (you ain't going to need it, so it shouldn't be there.)
在一些其他的评论中,关于添加减法的方法等等……既然你没有提到需要他们,我想你不会。除非你正在建造一个图书馆,它真的会被很多地方或其他人使用,你可以去YAGNI(你不需要它,所以它不应该在那里)。
#9
4
There are several ways to improve this or any value type:
有几种方法可以改进这个或任何值类型:
- Make your class immutable, including making numerator and denominator final
- 使您的类不可变,包括做分子和分母。
- Automatically convert fractions to a canonical form, e.g. 2/4 -> 1/2
- 自动将分数转换成标准形式,例如2/4 -> 1/2。
- Implement toString()
- 实现toString()
- Implement "public static Fraction valueOf(String s)" to convert from strings to fractions. Implement similar factory methods for converting from int, double, etc.
- 实现“公共静态分数值(字符串s)”,将字符串转换为分数。实现从int、double等转换的工厂方法。
- Implement addition, multiplication, etc
- 实现加法,乘法等
- Add constructor from whole numbers
- 从整数中添加构造函数。
- Override equals/hashCode
- Override equals和hashCode
- Consider making Fraction an interface with an implementation that switches to BigInteger as necessary
- 考虑将分数作为一个接口,并在必要时切换到BigInteger。
- Consider sub-classing Number
- 考虑生成子类数量
- Consider including named constants for common values like 0 and 1
- 考虑包括为普通值(如0和1)命名的常量。
- Consider making it serializable
- 考虑使它可串行化的
- Test for division by zero
- 对除法的检验。
- Document your API
- 文档API
Basically, take a look at the API for other value classes like Double, Integer and do what they do :)
基本上,看一下其他值类的API,比如Double, Integer和do what they do:)
#10
3
If you multiply the numerator and denominator of one Fraction with the denominator of the other and vice versa, you end up with two fractions (that are still the same values) with the same denominator and you can compare the numerators directly. Therefore you wouldn't need to calculate the double value:
如果分子分母同时乘以另一个分数的分母反之亦然,你得到两个分数(仍然是相同的值)和相同的分母,你可以直接比较数字。因此,您不需要计算双值:
public int compareTo(Fraction frac) {
int t = this.numerator * frac.getDenominator();
int f = frac.getNumerator() * this.denominator;
if(t>f) return 1;
if(f>t) return -1;
return 0;
}
#11
2
how I would improve that code:
我将如何改进这段代码:
- a constructor based on String Fraction(String s) //expect "number/number"
- 基于字符串分数(字符串s) //期望“数字/数字”的构造函数
- a copy constructor Fraction(Fraction copy)
- 复制构造函数分数(分数复制)
- override the clone method
- 覆盖克隆方法
- implements the equals, toString and hashcode methods
- 实现equals、toString和hashcode方法。
- implements the interface java.io.Serializable, Comparable
- 实现了java接口。可序列化的,类似的
- a method "double getDoubleValue()"
- “双getDoubleValue方法()
- a method add/divide/etc...
- 一个方法添加/分/等等……
- I would make that class as immutable (no setters)
- 我将它作为不可变的类(没有setter)
#12
2
You have a compareTo function already ... I would implement the Comparable interface.
你已经有一个比较函数了…我将实现类似的接口。
May not really matter for whatever you're going to do with it though.
不管你用它做什么,可能都无关紧要。
#13
#14
2
Specifically: Is there a better way to handle being passed a zero denominator? Setting the denominator to 1 is feels mighty arbitrary. How can I do this right?
具体来说:是否有更好的方法来处理通过零分母?把分母设为1,感觉很随意。我该怎么做才对呢?
I would say throw a ArithmeticException for divide by zero, since that's really what's happening:
我想说,用一个算术例外,除以0,因为这是实际发生的情况:
public Fraction(int numerator, int denominator) {
if(denominator == 0)
throw new ArithmeticException("Divide by zero.");
this.numerator = numerator;
this.denominator = denominator;
}
Instead of "Divide by zero.", you might want to make the message say "Divide by zero: Denominator for Fraction is zero."
而不是“除以0”你可能想让信息说“除以零:分数的分母是零。”
#15
1
Once you've created a fraction object why would you want to allow other objects to set the numerator or the denominator? I would think these should be read only. It makes the object immutable...
一旦你创建了一个分数对象你为什么要允许其他对象来设置分子或分母呢?我认为这些应该是只读的。它使对象不可变…
Also...setting the denominator to zero should throw an invalid argument exception (I don't know what it is in Java)
也……将分母设置为零应该抛出一个无效的参数异常(我不知道它在Java中是什么)
#16
1
Timothy Budd has a fine implementation of a Rational class in his "Data Structures in C++". Different language, of course, but it ports over to Java very nicely.
Timothy Budd在他的“c++数据结构”中有一个很好的Rational类的实现。当然,不同的语言,但是它对Java非常好。
I'd recommend more constructors. A default constructor would have numerator 0, denominator 1. A single arg constructor would assume a denominator of 1. Think how your users might use this class.
我建议更多的构造函数。默认构造函数的分子为0,分母为1。一个单一的arg构造函数会假设一个分母为1。想想你的用户如何使用这个类。
No check for zero denominator? Programming by contract would have you add it.
没有检查零分母?按合同程序编程,你可以添加它。
#17
1
I'll third or fifth or whatever the recommendation for making your fraction immutable. I'd also recommend that you have it extend the Number class. I'd probably look at the Double class, since you're probably going to want to implement many of the same methods.
我将会是第三个或第五名,或者其他任何让你的分数不变的建议。我还建议您将它扩展到Number类。我可能会看到Double类,因为您可能想要实现许多相同的方法。
You should probably also implement Comparable and Serializable since this behavior will probably be expected. Thus, you will need to implement compareTo(). You will also need to override equals() and I cannot stress strongly enough that you also override hashCode(). This might be one of the few cases though where you don't want compareTo() and equals() to be consistent since fractions reducable to each other are not necessarily equal.
您可能还应该实现可比较的和可序列化的,因为这种行为可能会被期望。因此,您需要实现compareTo()。您还需要重写equals(),并且我不能强烈地强调您也会覆盖hashCode()。这可能是少数情况之一,尽管您不希望使用compareTo()和equals()来保持一致,因为可以减少彼此的分数并不一定是相等的。
#18
1
A clean up practice that I like is to only have only one return.
我喜欢的一种清洁练习是只有一个回报。
public int compareTo(Fraction frac) {
int result = 0
double t = this.doubleValue();
double f = frac.doubleValue();
if(t>f)
result = 1;
else if(f>t)
result -1;
return result;
}
#19
1
Use Rational class from JScience library. It's the best thing for fractional arithmetic I seen in Java.
使用来自JScience库的Rational类。这是我在Java中看到的最好的分数算法。
#20
1
I cleaned up cletus' answer:
我清理了cletus的答案:
- Added Javadoc for all methods.
- 为所有方法添加Javadoc。
- Added checks for method preconditions.
- 增加检查方法的先决条件。
- Replaced custom parsing in
valueOf(String)
with theBigInteger(String)
which is both more flexible and faster. - 用BigInteger(String)代替自定义解析(String),它既灵活又快速。
import com.google.common.base.Splitter;
import java.math.BigDecimal;
import java.math.BigInteger;
import java.math.RoundingMode;
import java.util.List;
import java.util.Objects;
import org.bitbucket.cowwoc.preconditions.Preconditions;
/**
* A rational fraction, represented by {@code numerator / denominator}.
* <p>
* This implementation is based on <a
* href="https://*.com/a/474577/14731">https://*.com/a/474577/14731</a>
* <p>
* @author Gili Tzabari
*/
public final class BigRational extends Number implements Comparable<BigRational>
{
private static final long serialVersionUID = 0L;
public static final BigRational ZERO = new BigRational(BigInteger.ZERO, BigInteger.ONE);
public static final BigRational ONE = new BigRational(BigInteger.ONE, BigInteger.ONE);
/**
* Ensures the fraction the denominator is positive and optionally divides the numerator and
* denominator by the greatest common factor.
* <p>
* @param numerator a numerator
* @param denominator a denominator
* @param checkGcd true if the numerator and denominator should be divided by the greatest
* common factor
* @return the canonical representation of the rational fraction
*/
private static BigRational canonical(BigInteger numerator, BigInteger denominator,
boolean checkGcd)
{
assert (numerator != null);
assert (denominator != null);
if (denominator.signum() == 0)
throw new IllegalArgumentException("denominator is zero");
if (numerator.signum() == 0)
return ZERO;
BigInteger newNumerator = numerator;
BigInteger newDenominator = denominator;
if (newDenominator.signum() < 0)
{
newNumerator = newNumerator.negate();
newDenominator = newDenominator.negate();
}
if (checkGcd)
{
BigInteger gcd = newNumerator.gcd(newDenominator);
if (!gcd.equals(BigInteger.ONE))
{
newNumerator = newNumerator.divide(gcd);
newDenominator = newDenominator.divide(gcd);
}
}
return new BigRational(newNumerator, newDenominator);
}
/**
* @param numerator a numerator
* @param denominator a denominator
* @return a BigRational having value {@code numerator / denominator}
* @throws NullPointerException if numerator or denominator are null
*/
public static BigRational valueOf(BigInteger numerator, BigInteger denominator)
{
Preconditions.requireThat(numerator, "numerator").isNotNull();
Preconditions.requireThat(denominator, "denominator").isNotNull();
return canonical(numerator, denominator, true);
}
/**
* @param numerator a numerator
* @param denominator a denominator
* @return a BigRational having value {@code numerator / denominator}
*/
public static BigRational valueOf(long numerator, long denominator)
{
BigInteger bigNumerator = BigInteger.valueOf(numerator);
BigInteger bigDenominator = BigInteger.valueOf(denominator);
return canonical(bigNumerator, bigDenominator, true);
}
/**
* @param value the parameter value
* @param name the parameter name
* @return the BigInteger representation of the parameter
* @throws NumberFormatException if value is not a valid representation of BigInteger
*/
private static BigInteger requireBigInteger(String value, String name)
throws NumberFormatException
{
try
{
return new BigInteger(value);
}
catch (NumberFormatException e)
{
throw (NumberFormatException) new NumberFormatException("Invalid " + name + ": " + value).
initCause(e);
}
}
/**
* @param numerator a numerator
* @param denominator a denominator
* @return a BigRational having value {@code numerator / denominator}
* @throws NullPointerException if numerator or denominator are null
* @throws IllegalArgumentException if numerator or denominator are empty
* @throws NumberFormatException if numerator or denominator are not a valid representation of
* BigDecimal
*/
public static BigRational valueOf(String numerator, String denominator)
throws NullPointerException, IllegalArgumentException, NumberFormatException
{
Preconditions.requireThat(numerator, "numerator").isNotNull().isNotEmpty();
Preconditions.requireThat(denominator, "denominator").isNotNull().isNotEmpty();
BigInteger bigNumerator = requireBigInteger(numerator, "numerator");
BigInteger bigDenominator = requireBigInteger(denominator, "denominator");
return canonical(bigNumerator, bigDenominator, true);
}
/**
* @param value a string representation of a rational fraction (e.g. "12.34e5" or "3/4")
* @return a BigRational representation of the String
* @throws NullPointerException if value is null
* @throws IllegalArgumentException if value is empty
* @throws NumberFormatException if numerator or denominator are not a valid representation of
* BigDecimal
*/
public static BigRational valueOf(String value)
throws NullPointerException, IllegalArgumentException, NumberFormatException
{
Preconditions.requireThat(value, "value").isNotNull().isNotEmpty();
List<String> fractionParts = Splitter.on('/').splitToList(value);
if (fractionParts.size() == 1)
return valueOfRational(value);
if (fractionParts.size() == 2)
return BigRational.valueOf(fractionParts.get(0), fractionParts.get(1));
throw new IllegalArgumentException("Too many slashes: " + value);
}
/**
* @param value a string representation of a rational fraction (e.g. "12.34e5")
* @return a BigRational representation of the String
* @throws NullPointerException if value is null
* @throws IllegalArgumentException if value is empty
* @throws NumberFormatException if numerator or denominator are not a valid representation of
* BigDecimal
*/
private static BigRational valueOfRational(String value)
throws NullPointerException, IllegalArgumentException, NumberFormatException
{
Preconditions.requireThat(value, "value").isNotNull().isNotEmpty();
BigDecimal bigDecimal = new BigDecimal(value);
int scale = bigDecimal.scale();
BigInteger numerator = bigDecimal.unscaledValue();
BigInteger denominator;
if (scale > 0)
denominator = BigInteger.TEN.pow(scale);
else
{
numerator = numerator.multiply(BigInteger.TEN.pow(-scale));
denominator = BigInteger.ONE;
}
return canonical(numerator, denominator, true);
}
private final BigInteger numerator;
private final BigInteger denominator;
/**
* @param numerator the numerator
* @param denominator the denominator
* @throws NullPointerException if numerator or denominator are null
*/
private BigRational(BigInteger numerator, BigInteger denominator)
{
Preconditions.requireThat(numerator, "numerator").isNotNull();
Preconditions.requireThat(denominator, "denominator").isNotNull();
this.numerator = numerator;
this.denominator = denominator;
}
/**
* @return the numerator
*/
public BigInteger getNumerator()
{
return numerator;
}
/**
* @return the denominator
*/
public BigInteger getDenominator()
{
return denominator;
}
@Override
@SuppressWarnings("AccessingNonPublicFieldOfAnotherObject")
public int compareTo(BigRational other)
{
Preconditions.requireThat(other, "other").isNotNull();
// canonical() ensures denominator is positive
if (numerator.signum() != other.numerator.signum())
return numerator.signum() - other.numerator.signum();
// Set the denominator to a common multiple before comparing the numerators
BigInteger first = numerator.multiply(other.denominator);
BigInteger second = other.numerator.multiply(denominator);
return first.compareTo(second);
}
/**
* @param other another rational fraction
* @return the result of adding this object to {@code other}
* @throws NullPointerException if other is null
*/
@SuppressWarnings("AccessingNonPublicFieldOfAnotherObject")
public BigRational add(BigRational other)
{
Preconditions.requireThat(other, "other").isNotNull();
if (other.numerator.signum() == 0)
return this;
if (numerator.signum() == 0)
return other;
if (denominator.equals(other.denominator))
return new BigRational(numerator.add(other.numerator), denominator);
return canonical(numerator.multiply(other.denominator).
add(other.numerator.multiply(denominator)),
denominator.multiply(other.denominator), true);
}
/**
* @param other another rational fraction
* @return the result of subtracting {@code other} from this object
* @throws NullPointerException if other is null
*/
@SuppressWarnings("AccessingNonPublicFieldOfAnotherObject")
public BigRational subtract(BigRational other)
{
return add(other.negate());
}
/**
* @param other another rational fraction
* @return the result of multiplying this object by {@code other}
* @throws NullPointerException if other is null
*/
@SuppressWarnings("AccessingNonPublicFieldOfAnotherObject")
public BigRational multiply(BigRational other)
{
Preconditions.requireThat(other, "other").isNotNull();
if (numerator.signum() == 0 || other.numerator.signum() == 0)
return ZERO;
if (numerator.equals(other.denominator))
return canonical(other.numerator, denominator, true);
if (other.numerator.equals(denominator))
return canonical(numerator, other.denominator, true);
if (numerator.negate().equals(other.denominator))
return canonical(other.numerator.negate(), denominator, true);
if (other.numerator.negate().equals(denominator))
return canonical(numerator.negate(), other.denominator, true);
return canonical(numerator.multiply(other.numerator), denominator.multiply(other.denominator),
true);
}
/**
* @param other another rational fraction
* @return the result of dividing this object by {@code other}
* @throws NullPointerException if other is null
*/
public BigRational divide(BigRational other)
{
return multiply(other.invert());
}
/**
* @return true if the object is a whole number
*/
public boolean isInteger()
{
return numerator.signum() == 0 || denominator.equals(BigInteger.ONE);
}
/**
* Returns a BigRational whose value is (-this).
* <p>
* @return -this
*/
public BigRational negate()
{
return new BigRational(numerator.negate(), denominator);
}
/**
* @return a rational fraction with the numerator and denominator swapped
*/
public BigRational invert()
{
return canonical(denominator, numerator, false);
}
/**
* @return the absolute value of this {@code BigRational}
*/
public BigRational abs()
{
if (numerator.signum() < 0)
return negate();
return this;
}
/**
* @param exponent exponent to which both numerator and denominator is to be raised.
* @return a BigRational whose value is (this<sup>exponent</sup>).
*/
public BigRational pow(int exponent)
{
return canonical(numerator.pow(exponent), denominator.pow(exponent), true);
}
/**
* @param other another rational fraction
* @return the minimum of this object and the other fraction
*/
public BigRational min(BigRational other)
{
if (compareTo(other) <= 0)
return this;
return other;
}
/**
* @param other another rational fraction
* @return the maximum of this object and the other fraction
*/
public BigRational max(BigRational other)
{
if (compareTo(other) >= 0)
return this;
return other;
}
/**
* @param scale scale of the BigDecimal quotient to be returned
* @param roundingMode the rounding mode to apply
* @return a BigDecimal representation of this object
* @throws NullPointerException if roundingMode is null
*/
public BigDecimal toBigDecimal(int scale, RoundingMode roundingMode)
{
Preconditions.requireThat(roundingMode, "roundingMode").isNotNull();
if (isInteger())
return new BigDecimal(numerator);
return new BigDecimal(numerator).divide(new BigDecimal(denominator), scale, roundingMode);
}
@Override
public int intValue()
{
return (int) longValue();
}
@Override
public long longValue()
{
if (isInteger())
return numerator.longValue();
return numerator.divide(denominator).longValue();
}
@Override
public float floatValue()
{
return (float) doubleValue();
}
@Override
public double doubleValue()
{
if (isInteger())
return numerator.doubleValue();
return numerator.doubleValue() / denominator.doubleValue();
}
@Override
@SuppressWarnings("AccessingNonPublicFieldOfAnotherObject")
public boolean equals(Object o)
{
if (this == o)
return true;
if (!(o instanceof BigRational))
return false;
BigRational other = (BigRational) o;
return numerator.equals(other.denominator) && Objects.equals(denominator, other.denominator);
}
@Override
public int hashCode()
{
return Objects.hash(numerator, denominator);
}
/**
* Returns the String representation: {@code numerator / denominator}.
*/
@Override
public String toString()
{
if (isInteger())
return String.format("%,d", numerator);
return String.format("%,d / %,d", numerator, denominator);
}
}
#21
0
Initial remark:
最初的备注:
Never write this:
从来没有这样写:
if ( condition ) statement;
This is much better
这是更好的
if ( condition ) { statement };
Just create to create a good habit.
只是创造一个好习惯。
By making the class immutable as suggested, you can also take advantage of the double to perform the equals and hashCode and compareTo operations
通过使类不可变,您还可以利用double来执行equals和hashCode和compareTo操作。
Here's my quick dirty version:
这是我的快速脏版:
public final class Fraction implements Comparable {
private final int numerator;
private final int denominator;
private final Double internal;
public static Fraction createFraction( int numerator, int denominator ) {
return new Fraction( numerator, denominator );
}
private Fraction(int numerator, int denominator) {
this.numerator = numerator;
this.denominator = denominator;
this.internal = ((double) numerator)/((double) denominator);
}
public int getNumerator() {
return this.numerator;
}
public int getDenominator() {
return this.denominator;
}
private double doubleValue() {
return internal;
}
public int compareTo( Object o ) {
if ( o instanceof Fraction ) {
return internal.compareTo( ((Fraction)o).internal );
}
return 1;
}
public boolean equals( Object o ) {
if ( o instanceof Fraction ) {
return this.internal.equals( ((Fraction)o).internal );
}
return false;
}
public int hashCode() {
return internal.hashCode();
}
public String toString() {
return String.format("%d/%d", numerator, denominator );
}
public static void main( String [] args ) {
System.out.println( Fraction.createFraction( 1 , 2 ) ) ;
System.out.println( Fraction.createFraction( 1 , 2 ).hashCode() ) ;
System.out.println( Fraction.createFraction( 1 , 2 ).compareTo( Fraction.createFraction(2,4) ) ) ;
System.out.println( Fraction.createFraction( 1 , 2 ).equals( Fraction.createFraction(4,8) ) ) ;
System.out.println( Fraction.createFraction( 3 , 9 ).equals( Fraction.createFraction(1,3) ) ) ;
}
}
About the static factory method, it may be useful later, if you subclass the Fraction to handle more complex things, or if you decide to use a pool for the most frequently used objects.
关于静态工厂方法,如果您子类化这个分数来处理更复杂的事情,或者您决定为最常用的对象使用一个池,那么它可能会很有用。
It may not be the case, I just wanted to point it out. :)
也许不是这样,我只是想指出来。:)
See Effective Java first item.
参见有效的Java第一项。
#22
0
Might be useful to add simple things like reciprocate, get remainder and get whole.
可能有用的是添加一些简单的东西,比如回报,得到剩余,得到整体。
#23
0
Even though you have the methods compareTo(), if you want to make use of utilities like Collections.sort(), then you should also implement Comparable.
即使您有方法compareTo(),如果您想要使用像Collections.sort()这样的工具,那么您也应该实现可比较的。
public class Fraction extends Number implements Comparable<Fraction> {
...
}
Also, for pretty display I recommend overriding toString()
同样,对于漂亮的显示,我建议重写toString()
public String toString() {
return this.getNumerator() + "/" + this.getDenominator();
}
And finally, I'd make the class public so that you can use it from different packages.
最后,我将使类公开,以便您可以从不同的包中使用它。
#24
0
This function simplify using the eucledian algorithm is quite useful when defining fractions
在定义分数时,这个函数简化了使用eucledian算法。
public Fraction simplify(){
int safe;
int h= Math.max(numerator, denominator);
int h2 = Math.min(denominator, numerator);
if (h == 0){
return new Fraction(1,1);
}
while (h>h2 && h2>0){
h = h - h2;
if (h>h2){
safe = h;
h = h2;
h2 = safe;
}
}
return new Fraction(numerator/h,denominator/h);
}
#25
0
For industry-grade Fraction/Rational implementation, I would implement it so it can represent NaN, positive infinity, negative infinity, and optionally negative zero with operational semantics exactly the same as the IEEE 754 standard states for floating point arithmetics (it also eases the conversion to/from floating point values). Plus, since comparison to zero, one, and the special values above only needs simple, but combined comparison of the numerator and denominator against 0 and 1 - i would add several isXXX and compareToXXX methods for ease of use (eg. eq0() would use numerator == 0 && denominator != 0 behind the scenes instead of letting the client to compare against a zero valued instance). Some statically predefined values (ZERO, ONE, TWO, TEN, ONE_TENTH, NAN, etc.) are also useful, since they appear at several places as constant values. This is the best way IMHO.
对于行业级的分数/Rational实现,我将实现它,这样它就可以代表NaN、正无穷大、负无穷大,以及可选的负零,其运算语义与IEEE 754标准状态下的浮点运算符完全相同(它也简化了浮点值的转换)。另外,由于与0比较,1和上面的特殊值只需要简单的,但是分子和分母的比较是0和1,我将添加几个isXXX和compareToXXX方法来方便使用(如。eq0()将使用分子== 0 &&分母!= 0,而不是让客户端与一个零值实例进行比较。一些静态预定义的值(0、1、2、10、1 / 10、NAN等)也很有用,因为它们在几个地方以常量值出现。这是IMHO的最佳方式。
#1
59
It just so happens that I wrote a BigFraction class not too long ago, for Project Euler problems. It keeps a BigInteger numerator and denominator, so it'll never overflow. But it'll be a tad slow for a lot of operations that you know will never overflow.. anyway, use it if you want it. I've been dying to show this off somehow. :)
碰巧我不久前写了一个BigFraction类,用于Project Euler问题。它保持一个整数分子和分母,所以它不会溢出。但是对于很多你知道永远不会溢出的操作来说,这将是一个缓慢的过程。不管怎样,如果你想要的话,就用它吧。我一直想以某种方式展示它。:)
Edit: Latest and greatest version of this code, including unit tests is now hosted on GitHub and also available via Maven Central. I'm leaving my original code here so that this answer isn't just a link...
编辑:这段代码的最新和最伟大的版本,包括单元测试现在在GitHub上,也可以通过Maven中心提供。我把原来的代码留在这里,所以这个答案不仅仅是一个链接…
import java.math.*;
/**
* Arbitrary-precision fractions, utilizing BigIntegers for numerator and
* denominator. Fraction is always kept in lowest terms. Fraction is
* immutable, and guaranteed not to have a null numerator or denominator.
* Denominator will always be positive (so sign is carried by numerator,
* and a zero-denominator is impossible).
*/
public final class BigFraction extends Number implements Comparable<BigFraction>
{
private static final long serialVersionUID = 1L; //because Number is Serializable
private final BigInteger numerator;
private final BigInteger denominator;
public final static BigFraction ZERO = new BigFraction(BigInteger.ZERO, BigInteger.ONE, true);
public final static BigFraction ONE = new BigFraction(BigInteger.ONE, BigInteger.ONE, true);
/**
* Constructs a BigFraction with given numerator and denominator. Fraction
* will be reduced to lowest terms. If fraction is negative, negative sign will
* be carried on numerator, regardless of how the values were passed in.
*/
public BigFraction(BigInteger numerator, BigInteger denominator)
{
if(numerator == null)
throw new IllegalArgumentException("Numerator is null");
if(denominator == null)
throw new IllegalArgumentException("Denominator is null");
if(denominator.equals(BigInteger.ZERO))
throw new ArithmeticException("Divide by zero.");
//only numerator should be negative.
if(denominator.signum() < 0)
{
numerator = numerator.negate();
denominator = denominator.negate();
}
//create a reduced fraction
BigInteger gcd = numerator.gcd(denominator);
this.numerator = numerator.divide(gcd);
this.denominator = denominator.divide(gcd);
}
/**
* Constructs a BigFraction from a whole number.
*/
public BigFraction(BigInteger numerator)
{
this(numerator, BigInteger.ONE, true);
}
public BigFraction(long numerator, long denominator)
{
this(BigInteger.valueOf(numerator), BigInteger.valueOf(denominator));
}
public BigFraction(long numerator)
{
this(BigInteger.valueOf(numerator), BigInteger.ONE, true);
}
/**
* Constructs a BigFraction from a floating-point number.
*
* Warning: round-off error in IEEE floating point numbers can result
* in answers that are unexpected. For example,
* System.out.println(new BigFraction(1.1))
* will print:
* 2476979795053773/2251799813685248
*
* This is because 1.1 cannot be expressed exactly in binary form. The
* given fraction is exactly equal to the internal representation of
* the double-precision floating-point number. (Which, for 1.1, is:
* (-1)^0 * 2^0 * (1 + 0x199999999999aL / 0x10000000000000L).)
*
* NOTE: In many cases, BigFraction(Double.toString(d)) may give a result
* closer to what the user expects.
*/
public BigFraction(double d)
{
if(Double.isInfinite(d))
throw new IllegalArgumentException("double val is infinite");
if(Double.isNaN(d))
throw new IllegalArgumentException("double val is NaN");
//special case - math below won't work right for 0.0 or -0.0
if(d == 0)
{
numerator = BigInteger.ZERO;
denominator = BigInteger.ONE;
return;
}
final long bits = Double.doubleToLongBits(d);
final int sign = (int)(bits >> 63) & 0x1;
final int exponent = ((int)(bits >> 52) & 0x7ff) - 0x3ff;
final long mantissa = bits & 0xfffffffffffffL;
//number is (-1)^sign * 2^(exponent) * 1.mantissa
BigInteger tmpNumerator = BigInteger.valueOf(sign==0 ? 1 : -1);
BigInteger tmpDenominator = BigInteger.ONE;
//use shortcut: 2^x == 1 << x. if x is negative, shift the denominator
if(exponent >= 0)
tmpNumerator = tmpNumerator.multiply(BigInteger.ONE.shiftLeft(exponent));
else
tmpDenominator = tmpDenominator.multiply(BigInteger.ONE.shiftLeft(-exponent));
//1.mantissa == 1 + mantissa/2^52 == (2^52 + mantissa)/2^52
tmpDenominator = tmpDenominator.multiply(BigInteger.valueOf(0x10000000000000L));
tmpNumerator = tmpNumerator.multiply(BigInteger.valueOf(0x10000000000000L + mantissa));
BigInteger gcd = tmpNumerator.gcd(tmpDenominator);
numerator = tmpNumerator.divide(gcd);
denominator = tmpDenominator.divide(gcd);
}
/**
* Constructs a BigFraction from two floating-point numbers.
*
* Warning: round-off error in IEEE floating point numbers can result
* in answers that are unexpected. See BigFraction(double) for more
* information.
*
* NOTE: In many cases, BigFraction(Double.toString(numerator) + "/" + Double.toString(denominator))
* may give a result closer to what the user expects.
*/
public BigFraction(double numerator, double denominator)
{
if(denominator == 0)
throw new ArithmeticException("Divide by zero.");
BigFraction tmp = new BigFraction(numerator).divide(new BigFraction(denominator));
this.numerator = tmp.numerator;
this.denominator = tmp.denominator;
}
/**
* Constructs a new BigFraction from the given BigDecimal object.
*/
public BigFraction(BigDecimal d)
{
this(d.scale() < 0 ? d.unscaledValue().multiply(BigInteger.TEN.pow(-d.scale())) : d.unscaledValue(),
d.scale() < 0 ? BigInteger.ONE : BigInteger.TEN.pow(d.scale()));
}
public BigFraction(BigDecimal numerator, BigDecimal denominator)
{
if(denominator.equals(BigDecimal.ZERO))
throw new ArithmeticException("Divide by zero.");
BigFraction tmp = new BigFraction(numerator).divide(new BigFraction(denominator));
this.numerator = tmp.numerator;
this.denominator = tmp.denominator;
}
/**
* Constructs a BigFraction from a String. Expected format is numerator/denominator,
* but /denominator part is optional. Either numerator or denominator may be a floating-
* point decimal number, which in the same format as a parameter to the
* <code>BigDecimal(String)</code> constructor.
*
* @throws NumberFormatException if the string cannot be properly parsed.
*/
public BigFraction(String s)
{
int slashPos = s.indexOf('/');
if(slashPos < 0)
{
BigFraction res = new BigFraction(new BigDecimal(s));
this.numerator = res.numerator;
this.denominator = res.denominator;
}
else
{
BigDecimal num = new BigDecimal(s.substring(0, slashPos));
BigDecimal den = new BigDecimal(s.substring(slashPos+1, s.length()));
BigFraction res = new BigFraction(num, den);
this.numerator = res.numerator;
this.denominator = res.denominator;
}
}
/**
* Returns this + f.
*/
public BigFraction add(BigFraction f)
{
if(f == null)
throw new IllegalArgumentException("Null argument");
//n1/d1 + n2/d2 = (n1*d2 + d1*n2)/(d1*d2)
return new BigFraction(numerator.multiply(f.denominator).add(denominator.multiply(f.numerator)),
denominator.multiply(f.denominator));
}
/**
* Returns this + b.
*/
public BigFraction add(BigInteger b)
{
if(b == null)
throw new IllegalArgumentException("Null argument");
//n1/d1 + n2 = (n1 + d1*n2)/d1
return new BigFraction(numerator.add(denominator.multiply(b)),
denominator, true);
}
/**
* Returns this + n.
*/
public BigFraction add(long n)
{
return add(BigInteger.valueOf(n));
}
/**
* Returns this - f.
*/
public BigFraction subtract(BigFraction f)
{
if(f == null)
throw new IllegalArgumentException("Null argument");
return new BigFraction(numerator.multiply(f.denominator).subtract(denominator.multiply(f.numerator)),
denominator.multiply(f.denominator));
}
/**
* Returns this - b.
*/
public BigFraction subtract(BigInteger b)
{
if(b == null)
throw new IllegalArgumentException("Null argument");
return new BigFraction(numerator.subtract(denominator.multiply(b)),
denominator, true);
}
/**
* Returns this - n.
*/
public BigFraction subtract(long n)
{
return subtract(BigInteger.valueOf(n));
}
/**
* Returns this * f.
*/
public BigFraction multiply(BigFraction f)
{
if(f == null)
throw new IllegalArgumentException("Null argument");
return new BigFraction(numerator.multiply(f.numerator), denominator.multiply(f.denominator));
}
/**
* Returns this * b.
*/
public BigFraction multiply(BigInteger b)
{
if(b == null)
throw new IllegalArgumentException("Null argument");
return new BigFraction(numerator.multiply(b), denominator);
}
/**
* Returns this * n.
*/
public BigFraction multiply(long n)
{
return multiply(BigInteger.valueOf(n));
}
/**
* Returns this / f.
*/
public BigFraction divide(BigFraction f)
{
if(f == null)
throw new IllegalArgumentException("Null argument");
if(f.numerator.equals(BigInteger.ZERO))
throw new ArithmeticException("Divide by zero");
return new BigFraction(numerator.multiply(f.denominator), denominator.multiply(f.numerator));
}
/**
* Returns this / b.
*/
public BigFraction divide(BigInteger b)
{
if(b == null)
throw new IllegalArgumentException("Null argument");
if(b.equals(BigInteger.ZERO))
throw new ArithmeticException("Divide by zero");
return new BigFraction(numerator, denominator.multiply(b));
}
/**
* Returns this / n.
*/
public BigFraction divide(long n)
{
return divide(BigInteger.valueOf(n));
}
/**
* Returns this^exponent.
*/
public BigFraction pow(int exponent)
{
if(exponent == 0)
return BigFraction.ONE;
else if (exponent == 1)
return this;
else if (exponent < 0)
return new BigFraction(denominator.pow(-exponent), numerator.pow(-exponent), true);
else
return new BigFraction(numerator.pow(exponent), denominator.pow(exponent), true);
}
/**
* Returns 1/this.
*/
public BigFraction reciprocal()
{
if(this.numerator.equals(BigInteger.ZERO))
throw new ArithmeticException("Divide by zero");
return new BigFraction(denominator, numerator, true);
}
/**
* Returns the complement of this fraction, which is equal to 1 - this.
* Useful for probabilities/statistics.
*/
public BigFraction complement()
{
return new BigFraction(denominator.subtract(numerator), denominator, true);
}
/**
* Returns -this.
*/
public BigFraction negate()
{
return new BigFraction(numerator.negate(), denominator, true);
}
/**
* Returns -1, 0, or 1, representing the sign of this fraction.
*/
public int signum()
{
return numerator.signum();
}
/**
* Returns the absolute value of this.
*/
public BigFraction abs()
{
return (signum() < 0 ? negate() : this);
}
/**
* Returns a string representation of this, in the form
* numerator/denominator.
*/
public String toString()
{
return numerator.toString() + "/" + denominator.toString();
}
/**
* Returns if this object is equal to another object.
*/
public boolean equals(Object o)
{
if(!(o instanceof BigFraction))
return false;
BigFraction f = (BigFraction)o;
return numerator.equals(f.numerator) && denominator.equals(f.denominator);
}
/**
* Returns a hash code for this object.
*/
public int hashCode()
{
//using the method generated by Eclipse, but streamlined a bit..
return (31 + numerator.hashCode())*31 + denominator.hashCode();
}
/**
* Returns a negative, zero, or positive number, indicating if this object
* is less than, equal to, or greater than f, respectively.
*/
public int compareTo(BigFraction f)
{
if(f == null)
throw new IllegalArgumentException("Null argument");
//easy case: this and f have different signs
if(signum() != f.signum())
return signum() - f.signum();
//next easy case: this and f have the same denominator
if(denominator.equals(f.denominator))
return numerator.compareTo(f.numerator);
//not an easy case, so first make the denominators equal then compare the numerators
return numerator.multiply(f.denominator).compareTo(denominator.multiply(f.numerator));
}
/**
* Returns the smaller of this and f.
*/
public BigFraction min(BigFraction f)
{
if(f == null)
throw new IllegalArgumentException("Null argument");
return (this.compareTo(f) <= 0 ? this : f);
}
/**
* Returns the maximum of this and f.
*/
public BigFraction max(BigFraction f)
{
if(f == null)
throw new IllegalArgumentException("Null argument");
return (this.compareTo(f) >= 0 ? this : f);
}
/**
* Returns a positive BigFraction, greater than or equal to zero, and less than one.
*/
public static BigFraction random()
{
return new BigFraction(Math.random());
}
public final BigInteger getNumerator() { return numerator; }
public final BigInteger getDenominator() { return denominator; }
//implementation of Number class. may cause overflow.
public byte byteValue() { return (byte) Math.max(Byte.MIN_VALUE, Math.min(Byte.MAX_VALUE, longValue())); }
public short shortValue() { return (short)Math.max(Short.MIN_VALUE, Math.min(Short.MAX_VALUE, longValue())); }
public int intValue() { return (int) Math.max(Integer.MIN_VALUE, Math.min(Integer.MAX_VALUE, longValue())); }
public long longValue() { return Math.round(doubleValue()); }
public float floatValue() { return (float)doubleValue(); }
public double doubleValue() { return toBigDecimal(18).doubleValue(); }
/**
* Returns a BigDecimal representation of this fraction. If possible, the
* returned value will be exactly equal to the fraction. If not, the BigDecimal
* will have a scale large enough to hold the same number of significant figures
* as both numerator and denominator, or the equivalent of a double-precision
* number, whichever is more.
*/
public BigDecimal toBigDecimal()
{
//Implementation note: A fraction can be represented exactly in base-10 iff its
//denominator is of the form 2^a * 5^b, where a and b are nonnegative integers.
//(In other words, if there are no prime factors of the denominator except for
//2 and 5, or if the denominator is 1). So to determine if this denominator is
//of this form, continually divide by 2 to get the number of 2's, and then
//continually divide by 5 to get the number of 5's. Afterward, if the denominator
//is 1 then there are no other prime factors.
//Note: number of 2's is given by the number of trailing 0 bits in the number
int twos = denominator.getLowestSetBit();
BigInteger tmpDen = denominator.shiftRight(twos); // x / 2^n === x >> n
final BigInteger FIVE = BigInteger.valueOf(5);
int fives = 0;
BigInteger[] divMod = null;
//while(tmpDen % 5 == 0) { fives++; tmpDen /= 5; }
while(BigInteger.ZERO.equals((divMod = tmpDen.divideAndRemainder(FIVE))[1]))
{
fives++;
tmpDen = divMod[0];
}
if(BigInteger.ONE.equals(tmpDen))
{
//This fraction will terminate in base 10, so it can be represented exactly as
//a BigDecimal. We would now like to make the fraction of the form
//unscaled / 10^scale. We know that 2^x * 5^x = 10^x, and our denominator is
//in the form 2^twos * 5^fives. So use max(twos, fives) as the scale, and
//multiply the numerator and deminator by the appropriate number of 2's or 5's
//such that the denominator is of the form 2^scale * 5^scale. (Of course, we
//only have to actually multiply the numerator, since all we need for the
//BigDecimal constructor is the scale.
BigInteger unscaled = numerator;
int scale = Math.max(twos, fives);
if(twos < fives)
unscaled = unscaled.shiftLeft(fives - twos); //x * 2^n === x << n
else if (fives < twos)
unscaled = unscaled.multiply(FIVE.pow(twos - fives));
return new BigDecimal(unscaled, scale);
}
//else: this number will repeat infinitely in base-10. So try to figure out
//a good number of significant digits. Start with the number of digits required
//to represent the numerator and denominator in base-10, which is given by
//bitLength / log[2](10). (bitLenth is the number of digits in base-2).
final double LG10 = 3.321928094887362; //Precomputed ln(10)/ln(2), a.k.a. log[2](10)
int precision = Math.max(numerator.bitLength(), denominator.bitLength());
precision = (int)Math.ceil(precision / LG10);
//If the precision is less than 18 digits, use 18 digits so that the number
//will be at least as accurate as a cast to a double. For example, with
//the fraction 1/3, precision will be 1, giving a result of 0.3. This is
//quite a bit different from what a user would expect.
if(precision < 18)
precision = 18;
return toBigDecimal(precision);
}
/**
* Returns a BigDecimal representation of this fraction, with a given precision.
* @param precision the number of significant figures to be used in the result.
*/
public BigDecimal toBigDecimal(int precision)
{
return new BigDecimal(numerator).divide(new BigDecimal(denominator), new MathContext(precision, RoundingMode.HALF_EVEN));
}
//--------------------------------------------------------------------------
// PRIVATE FUNCTIONS
//--------------------------------------------------------------------------
/**
* Private constructor, used when you can be certain that the fraction is already in
* lowest terms. No check is done to reduce numerator/denominator. A check is still
* done to maintain a positive denominator.
*
* @param throwaway unused variable, only here to signal to the compiler that this
* constructor should be used.
*/
private BigFraction(BigInteger numerator, BigInteger denominator, boolean throwaway)
{
if(denominator.signum() < 0)
{
this.numerator = numerator.negate();
this.denominator = denominator.negate();
}
else
{
this.numerator = numerator;
this.denominator = denominator;
}
}
}
#2
56
- Make it immutable;
- 让它不变的;
- Make it canonical, meaning 6/4 becomes 3/2 (greatest common divisor algorithm is useful for this);
- 使它规范,意味着6/4变成3/2(最大公约数算法对这个有用);
- Call it Rational, since what you're representing is a rational number;
- 把它称为理性,因为你所代表的是一个理性的数字;
- You could use
BigInteger
to store arbitrarilyy-precise values. If not that thenlong
, which has an easier implementation; - 您可以使用BigInteger来存储任意精确的值。如果不是这样的话,那么很长,执行起来更容易;
- Make the denominator always positive. Sign should be carried by the numerator;
- 分母总是正的。符号应由分子携带;
- Extend
Number
; - 扩展数量;
- Implement
Comparable<T>
; - 实现类似< T >;
- Implement
equals()
andhashCode()
; - 实现equals()和hashCode();
- Add factory method for a number represented by a
String
; - 为以字符串表示的数字添加工厂方法;
- Add some convenience factory methods;
- 添加一些便利的工厂方法;
- Add a
toString()
; and - 添加一个toString();和
- Make it
Serializable
. - 可序列化的。
In fact, try this on for size. It runs but may have some issues:
事实上,试试这个尺寸。它运行但可能存在一些问题:
public class BigRational extends Number implements Comparable<BigRational>, Serializable {
public final static BigRational ZERO = new BigRational(BigInteger.ZERO, BigInteger.ONE);
private final static long serialVersionUID = 1099377265582986378L;
private final BigInteger numerator, denominator;
private BigRational(BigInteger numerator, BigInteger denominator) {
this.numerator = numerator;
this.denominator = denominator;
}
private static BigRational canonical(BigInteger numerator, BigInteger denominator, boolean checkGcd) {
if (denominator.signum() == 0) {
throw new IllegalArgumentException("denominator is zero");
}
if (numerator.signum() == 0) {
return ZERO;
}
if (denominator.signum() < 0) {
numerator = numerator.negate();
denominator = denominator.negate();
}
if (checkGcd) {
BigInteger gcd = numerator.gcd(denominator);
if (!gcd.equals(BigInteger.ONE)) {
numerator = numerator.divide(gcd);
denominator = denominator.divide(gcd);
}
}
return new BigRational(numerator, denominator);
}
public static BigRational getInstance(BigInteger numerator, BigInteger denominator) {
return canonical(numerator, denominator, true);
}
public static BigRational getInstance(long numerator, long denominator) {
return canonical(new BigInteger("" + numerator), new BigInteger("" + denominator), true);
}
public static BigRational getInstance(String numerator, String denominator) {
return canonical(new BigInteger(numerator), new BigInteger(denominator), true);
}
public static BigRational valueOf(String s) {
Pattern p = Pattern.compile("(-?\\d+)(?:.(\\d+)?)?0*(?:e(-?\\d+))?");
Matcher m = p.matcher(s);
if (!m.matches()) {
throw new IllegalArgumentException("Unknown format '" + s + "'");
}
// this translates 23.123e5 to 25,123 / 1000 * 10^5 = 2,512,300 / 1 (GCD)
String whole = m.group(1);
String decimal = m.group(2);
String exponent = m.group(3);
String n = whole;
// 23.123 => 23123
if (decimal != null) {
n += decimal;
}
BigInteger numerator = new BigInteger(n);
// exponent is an int because BigInteger.pow() takes an int argument
// it gets more difficult if exponent needs to be outside {-2 billion,2 billion}
int exp = exponent == null ? 0 : Integer.valueOf(exponent);
int decimalPlaces = decimal == null ? 0 : decimal.length();
exp -= decimalPlaces;
BigInteger denominator;
if (exp < 0) {
denominator = BigInteger.TEN.pow(-exp);
} else {
numerator = numerator.multiply(BigInteger.TEN.pow(exp));
denominator = BigInteger.ONE;
}
// done
return canonical(numerator, denominator, true);
}
// Comparable
public int compareTo(BigRational o) {
// note: this is a bit of cheat, relying on BigInteger.compareTo() returning
// -1, 0 or 1. For the more general contract of compareTo(), you'd need to do
// more checking
if (numerator.signum() != o.numerator.signum()) {
return numerator.signum() - o.numerator.signum();
} else {
// oddly BigInteger has gcd() but no lcm()
BigInteger i1 = numerator.multiply(o.denominator);
BigInteger i2 = o.numerator.multiply(denominator);
return i1.compareTo(i2); // expensive!
}
}
public BigRational add(BigRational o) {
if (o.numerator.signum() == 0) {
return this;
} else if (numerator.signum() == 0) {
return o;
} else if (denominator.equals(o.denominator)) {
return new BigRational(numerator.add(o.numerator), denominator);
} else {
return canonical(numerator.multiply(o.denominator).add(o.numerator.multiply(denominator)), denominator.multiply(o.denominator), true);
}
}
public BigRational multiply(BigRational o) {
if (numerator.signum() == 0 || o.numerator.signum( )== 0) {
return ZERO;
} else if (numerator.equals(o.denominator)) {
return canonical(o.numerator, denominator, true);
} else if (o.numerator.equals(denominator)) {
return canonical(numerator, o.denominator, true);
} else if (numerator.negate().equals(o.denominator)) {
return canonical(o.numerator.negate(), denominator, true);
} else if (o.numerator.negate().equals(denominator)) {
return canonical(numerator.negate(), o.denominator, true);
} else {
return canonical(numerator.multiply(o.numerator), denominator.multiply(o.denominator), true);
}
}
public BigInteger getNumerator() { return numerator; }
public BigInteger getDenominator() { return denominator; }
public boolean isInteger() { return numerator.signum() == 0 || denominator.equals(BigInteger.ONE); }
public BigRational negate() { return new BigRational(numerator.negate(), denominator); }
public BigRational invert() { return canonical(denominator, numerator, false); }
public BigRational abs() { return numerator.signum() < 0 ? negate() : this; }
public BigRational pow(int exp) { return canonical(numerator.pow(exp), denominator.pow(exp), true); }
public BigRational subtract(BigRational o) { return add(o.negate()); }
public BigRational divide(BigRational o) { return multiply(o.invert()); }
public BigRational min(BigRational o) { return compareTo(o) <= 0 ? this : o; }
public BigRational max(BigRational o) { return compareTo(o) >= 0 ? this : o; }
public BigDecimal toBigDecimal(int scale, RoundingMode roundingMode) {
return isInteger() ? new BigDecimal(numerator) : new BigDecimal(numerator).divide(new BigDecimal(denominator), scale, roundingMode);
}
// Number
public int intValue() { return isInteger() ? numerator.intValue() : numerator.divide(denominator).intValue(); }
public long longValue() { return isInteger() ? numerator.longValue() : numerator.divide(denominator).longValue(); }
public float floatValue() { return (float)doubleValue(); }
public double doubleValue() { return isInteger() ? numerator.doubleValue() : numerator.doubleValue() / denominator.doubleValue(); }
@Override
public String toString() { return isInteger() ? String.format("%,d", numerator) : String.format("%,d / %,d", numerator, denominator); }
@Override
public boolean equals(Object o) {
if (this == o) return true;
if (o == null || getClass() != o.getClass()) return false;
BigRational that = (BigRational) o;
if (denominator != null ? !denominator.equals(that.denominator) : that.denominator != null) return false;
if (numerator != null ? !numerator.equals(that.numerator) : that.numerator != null) return false;
return true;
}
@Override
public int hashCode() {
int result = numerator != null ? numerator.hashCode() : 0;
result = 31 * result + (denominator != null ? denominator.hashCode() : 0);
return result;
}
public static void main(String args[]) {
BigRational r1 = BigRational.valueOf("3.14e4");
BigRational r2 = BigRational.getInstance(111, 7);
dump("r1", r1);
dump("r2", r2);
dump("r1 + r2", r1.add(r2));
dump("r1 - r2", r1.subtract(r2));
dump("r1 * r2", r1.multiply(r2));
dump("r1 / r2", r1.divide(r2));
dump("r2 ^ 2", r2.pow(2));
}
public static void dump(String name, BigRational r) {
System.out.printf("%s = %s%n", name, r);
System.out.printf("%s.negate() = %s%n", name, r.negate());
System.out.printf("%s.invert() = %s%n", name, r.invert());
System.out.printf("%s.intValue() = %,d%n", name, r.intValue());
System.out.printf("%s.longValue() = %,d%n", name, r.longValue());
System.out.printf("%s.floatValue() = %,f%n", name, r.floatValue());
System.out.printf("%s.doubleValue() = %,f%n", name, r.doubleValue());
System.out.println();
}
}
Output is:
输出是:
r1 = 31,400
r1.negate() = -31,400
r1.invert() = 1 / 31,400
r1.intValue() = 31,400
r1.longValue() = 31,400
r1.floatValue() = 31,400.000000
r1.doubleValue() = 31,400.000000
r2 = 111 / 7
r2.negate() = -111 / 7
r2.invert() = 7 / 111
r2.intValue() = 15
r2.longValue() = 15
r2.floatValue() = 15.857142
r2.doubleValue() = 15.857143
r1 + r2 = 219,911 / 7
r1 + r2.negate() = -219,911 / 7
r1 + r2.invert() = 7 / 219,911
r1 + r2.intValue() = 31,415
r1 + r2.longValue() = 31,415
r1 + r2.floatValue() = 31,415.857422
r1 + r2.doubleValue() = 31,415.857143
r1 - r2 = 219,689 / 7
r1 - r2.negate() = -219,689 / 7
r1 - r2.invert() = 7 / 219,689
r1 - r2.intValue() = 31,384
r1 - r2.longValue() = 31,384
r1 - r2.floatValue() = 31,384.142578
r1 - r2.doubleValue() = 31,384.142857
r1 * r2 = 3,485,400 / 7
r1 * r2.negate() = -3,485,400 / 7
r1 * r2.invert() = 7 / 3,485,400
r1 * r2.intValue() = 497,914
r1 * r2.longValue() = 497,914
r1 * r2.floatValue() = 497,914.281250
r1 * r2.doubleValue() = 497,914.285714
r1 / r2 = 219,800 / 111
r1 / r2.negate() = -219,800 / 111
r1 / r2.invert() = 111 / 219,800
r1 / r2.intValue() = 1,980
r1 / r2.longValue() = 1,980
r1 / r2.floatValue() = 1,980.180176
r1 / r2.doubleValue() = 1,980.180180
r2 ^ 2 = 12,321 / 49
r2 ^ 2.negate() = -12,321 / 49
r2 ^ 2.invert() = 49 / 12,321
r2 ^ 2.intValue() = 251
r2 ^ 2.longValue() = 251
r2 ^ 2.floatValue() = 251.448975
r2 ^ 2.doubleValue() = 251.448980
#3
25
I'm trying to work with proper fractions in Java.
我在尝试用Java的适当分数。
Apache Commons Math has had a Fraction class for quite some time. Most times the answer to, "Boy I wish Java had something like X in the core library!" can be found under the umbrella of the Apache Commons library.
Apache Commons Math在相当长的一段时间里都有一个分数类。大多数时候,“我希望Java在核心库中有像X这样的东西”的答案可以在Apache Commons library的保护伞下找到。
#4
24
Please make it an immutable type! The value of a fraction doesn't change - a half doesn't become a third, for example. Instead of setDenominator, you could have withDenominator which returns a new fraction which has the same numerator but the specified denominator.
请让它成为不可变类型!分数的值是不变的,例如,1 / 2不等于1 / 3。而不是set分母,你可以使用分母,它返回一个新的分数,它有相同的分子,但分母是相同的。
Life is much easier with immutable types.
使用不可变类型的生活更容易。
Overriding equals and hashcode would be sensible too, so it can be used in maps and sets. Outlaw Programmer's points about arithmetic operators and string formatting are good too.
重写equals和hashcode也是明智的,因此可以在映射和集合中使用。Outlaw程序员关于算术运算符和字符串格式的观点也很好。
As a general guide, have a look at BigInteger and BigDecimal. They're not doing the same thing, but they're similar enough to give you good ideas.
作为一般指南,请查看BigInteger和BigDecimal。他们不是在做同样的事情,但是他们很相似,可以给你好的想法。
#5
7
Well, for one, I'd get rid of the setters and make Fractions immutable.
首先,我要去掉setter,使分数不变。
You'll probably also want methods to add, subtract, etc., and maybe some way to get the representation in various String formats.
您可能还需要一些方法来添加、减法等等,也许还需要一些方法来获得各种字符串格式的表示。
EDIT: I'd probably mark the fields as 'final' to signal my intent but I guess it's not a big deal...
编辑:我可能会把字段标记为“final”来表示我的意图,但我想这没什么大不了的……
#6
5
- It's kinda pointless without arithmetic methods like add() and multiply(), etc.
- 没有像add()和乘法()这样的算术方法,这是没有意义的。
- You should definitely override equals() and hashCode().
- 您绝对应该重写equals()和hashCode()。
- You should either add a method to normalize the fraction, or do it automatically. Think about whether you want 1/2 and 2/4 to be considered the same or not - this has implications for the equals(), hashCode() and compareTo() methods.
- 您应该添加一个方法使分数正常化,或者自动执行。考虑您是否希望将1/2和2/4视为相同或不相同——这对equals()、hashCode()和compareTo()方法有影响。
#7
5
I will need to order them from smallest to largest, so eventually I will need to represent them as a double also
我需要从最小到最大的顺序排列,所以最终我需要把它们表示成double。
Not strictly necessary. (In fact if you want to handle equality correctly, don't rely on double to work properly.) If b*d is positive, a/b < c/d if ad < bc. If there are negative integers involved, that can be handled appropriately...
不是完全必要的。(事实上,如果你想正确地处理平等问题,不要依赖替身来正常工作。)如果b*d是正的,a/b < c/d如果ad < bc。如果涉及到负整数,可以适当处理……
I might rewrite as:
我可以改写为:
public int compareTo(Fraction frac)
{
// we are comparing this=a/b with frac=c/d
// by multiplying both sides by bd.
// If bd is positive, then a/b < c/d <=> ad < bc.
// If bd is negative, then a/b < c/d <=> ad > bc.
// If bd is 0, then you've got other problems (either b=0 or d=0)
int d = frac.getDenominator();
long ad = (long)this.numerator * d;
long bc = (long)this.denominator * frac.getNumerator();
long diff = ((long)d*this.denominator > 0) ? (ad-bc) : (bc-ad);
return (diff > 0 ? 1 : (diff < 0 ? -1 : 0));
}
The use of long
here is to ensure there's not an overflow if you multiply two large int
s. handle If you can guarantee that the denominator is always nonnegative (if it's negative, just negate both numerator and denominator), then you can get rid of having to check whether b*d is positive and save a few steps. I'm not sure what behavior you're looking for with zero denominator.
在这里使用长时间是为了确保如果您将两个大的ints相乘,就不会发生溢出。如果你能保证分母总是非负的(如果它是负的,只是否定了分子和分母),那么你就可以消去检查b*d是否为正,并节省了一些步骤。我不知道你要找的是什么,零分母。
Not sure how performance compares to using doubles to compare. (that is, if you care about performance that much) Here's a test method I used to check. (Appears to work properly.)
不确定性能如何与使用双打比较。(也就是说,如果你很关心性能的话)这是我用来检查的测试方法。(似乎正常工作。)
public static void main(String[] args)
{
int a = Integer.parseInt(args[0]);
int b = Integer.parseInt(args[1]);
int c = Integer.parseInt(args[2]);
int d = Integer.parseInt(args[3]);
Fraction f1 = new Fraction(a,b);
Fraction f2 = new Fraction(c,d);
int rel = f1.compareTo(f2);
String relstr = "<=>";
System.out.println(a+"/"+b+" "+relstr.charAt(rel+1)+" "+c+"/"+d);
}
(p.s. you might consider restructuring to implement Comparable
or Comparator
for your class.)
(附注:你可能会考虑重组,以便为你的班级实施比较或比较。)
#8
4
One very minor improvement could potentially be to save the double value that you're computing so that you only compute it on the first access. This won't be a big win unless you're accessing this number a lot, but it's not overly difficult to do, either.
一个非常小的改进可能是保存您正在计算的双重值,以便您只在第一次访问时计算它。除非你经常访问这个数字,否则这不会是一个很大的胜利,但也不是很难。
One additional point might be the error checking you do in the denominator...you automatically change 0 to 1. Not sure if this is correct for your particular application, but in general if someone is trying to divide by 0, something is very wrong. I'd let this throw an exception (a specialized exception if you feel it's needed) rather than change the value in a seemingly arbitrary way that isn't known to the user.
一个额外的点可能是在分母上做的错误检查…你会自动把0变成1。不确定这是否适用于你的特殊应用,但一般情况下,如果有人试图除以0,那就大错特错了。如果您觉得它是需要的,那么我就让它抛出一个异常(如果您觉得它是需要的一个特殊的异常),而不是以一种看似随意的方式改变它的值,而这个方法对用户来说是未知的。
In constrast with some other comments, about adding methods to add subtract, etc...since you didn't mention needing them, I'm assuming you don't. And unless you're building a library that is really going to be used in many places or by other people, go with YAGNI (you ain't going to need it, so it shouldn't be there.)
在一些其他的评论中,关于添加减法的方法等等……既然你没有提到需要他们,我想你不会。除非你正在建造一个图书馆,它真的会被很多地方或其他人使用,你可以去YAGNI(你不需要它,所以它不应该在那里)。
#9
4
There are several ways to improve this or any value type:
有几种方法可以改进这个或任何值类型:
- Make your class immutable, including making numerator and denominator final
- 使您的类不可变,包括做分子和分母。
- Automatically convert fractions to a canonical form, e.g. 2/4 -> 1/2
- 自动将分数转换成标准形式,例如2/4 -> 1/2。
- Implement toString()
- 实现toString()
- Implement "public static Fraction valueOf(String s)" to convert from strings to fractions. Implement similar factory methods for converting from int, double, etc.
- 实现“公共静态分数值(字符串s)”,将字符串转换为分数。实现从int、double等转换的工厂方法。
- Implement addition, multiplication, etc
- 实现加法,乘法等
- Add constructor from whole numbers
- 从整数中添加构造函数。
- Override equals/hashCode
- Override equals和hashCode
- Consider making Fraction an interface with an implementation that switches to BigInteger as necessary
- 考虑将分数作为一个接口,并在必要时切换到BigInteger。
- Consider sub-classing Number
- 考虑生成子类数量
- Consider including named constants for common values like 0 and 1
- 考虑包括为普通值(如0和1)命名的常量。
- Consider making it serializable
- 考虑使它可串行化的
- Test for division by zero
- 对除法的检验。
- Document your API
- 文档API
Basically, take a look at the API for other value classes like Double, Integer and do what they do :)
基本上,看一下其他值类的API,比如Double, Integer和do what they do:)
#10
3
If you multiply the numerator and denominator of one Fraction with the denominator of the other and vice versa, you end up with two fractions (that are still the same values) with the same denominator and you can compare the numerators directly. Therefore you wouldn't need to calculate the double value:
如果分子分母同时乘以另一个分数的分母反之亦然,你得到两个分数(仍然是相同的值)和相同的分母,你可以直接比较数字。因此,您不需要计算双值:
public int compareTo(Fraction frac) {
int t = this.numerator * frac.getDenominator();
int f = frac.getNumerator() * this.denominator;
if(t>f) return 1;
if(f>t) return -1;
return 0;
}
#11
2
how I would improve that code:
我将如何改进这段代码:
- a constructor based on String Fraction(String s) //expect "number/number"
- 基于字符串分数(字符串s) //期望“数字/数字”的构造函数
- a copy constructor Fraction(Fraction copy)
- 复制构造函数分数(分数复制)
- override the clone method
- 覆盖克隆方法
- implements the equals, toString and hashcode methods
- 实现equals、toString和hashcode方法。
- implements the interface java.io.Serializable, Comparable
- 实现了java接口。可序列化的,类似的
- a method "double getDoubleValue()"
- “双getDoubleValue方法()
- a method add/divide/etc...
- 一个方法添加/分/等等……
- I would make that class as immutable (no setters)
- 我将它作为不可变的类(没有setter)
#12
2
You have a compareTo function already ... I would implement the Comparable interface.
你已经有一个比较函数了…我将实现类似的接口。
May not really matter for whatever you're going to do with it though.
不管你用它做什么,可能都无关紧要。
#13
2
If you're feeling adventurous, take a look at JScience. It has a Rational
class that represents fractions.
如果你喜欢冒险,那就去看看JScience。它有一个表示分数的Rational类。
#14
2
Specifically: Is there a better way to handle being passed a zero denominator? Setting the denominator to 1 is feels mighty arbitrary. How can I do this right?
具体来说:是否有更好的方法来处理通过零分母?把分母设为1,感觉很随意。我该怎么做才对呢?
I would say throw a ArithmeticException for divide by zero, since that's really what's happening:
我想说,用一个算术例外,除以0,因为这是实际发生的情况:
public Fraction(int numerator, int denominator) {
if(denominator == 0)
throw new ArithmeticException("Divide by zero.");
this.numerator = numerator;
this.denominator = denominator;
}
Instead of "Divide by zero.", you might want to make the message say "Divide by zero: Denominator for Fraction is zero."
而不是“除以0”你可能想让信息说“除以零:分数的分母是零。”
#15
1
Once you've created a fraction object why would you want to allow other objects to set the numerator or the denominator? I would think these should be read only. It makes the object immutable...
一旦你创建了一个分数对象你为什么要允许其他对象来设置分子或分母呢?我认为这些应该是只读的。它使对象不可变…
Also...setting the denominator to zero should throw an invalid argument exception (I don't know what it is in Java)
也……将分母设置为零应该抛出一个无效的参数异常(我不知道它在Java中是什么)
#16
1
Timothy Budd has a fine implementation of a Rational class in his "Data Structures in C++". Different language, of course, but it ports over to Java very nicely.
Timothy Budd在他的“c++数据结构”中有一个很好的Rational类的实现。当然,不同的语言,但是它对Java非常好。
I'd recommend more constructors. A default constructor would have numerator 0, denominator 1. A single arg constructor would assume a denominator of 1. Think how your users might use this class.
我建议更多的构造函数。默认构造函数的分子为0,分母为1。一个单一的arg构造函数会假设一个分母为1。想想你的用户如何使用这个类。
No check for zero denominator? Programming by contract would have you add it.
没有检查零分母?按合同程序编程,你可以添加它。
#17
1
I'll third or fifth or whatever the recommendation for making your fraction immutable. I'd also recommend that you have it extend the Number class. I'd probably look at the Double class, since you're probably going to want to implement many of the same methods.
我将会是第三个或第五名,或者其他任何让你的分数不变的建议。我还建议您将它扩展到Number类。我可能会看到Double类,因为您可能想要实现许多相同的方法。
You should probably also implement Comparable and Serializable since this behavior will probably be expected. Thus, you will need to implement compareTo(). You will also need to override equals() and I cannot stress strongly enough that you also override hashCode(). This might be one of the few cases though where you don't want compareTo() and equals() to be consistent since fractions reducable to each other are not necessarily equal.
您可能还应该实现可比较的和可序列化的,因为这种行为可能会被期望。因此,您需要实现compareTo()。您还需要重写equals(),并且我不能强烈地强调您也会覆盖hashCode()。这可能是少数情况之一,尽管您不希望使用compareTo()和equals()来保持一致,因为可以减少彼此的分数并不一定是相等的。
#18
1
A clean up practice that I like is to only have only one return.
我喜欢的一种清洁练习是只有一个回报。
public int compareTo(Fraction frac) {
int result = 0
double t = this.doubleValue();
double f = frac.doubleValue();
if(t>f)
result = 1;
else if(f>t)
result -1;
return result;
}
#19
1
Use Rational class from JScience library. It's the best thing for fractional arithmetic I seen in Java.
使用来自JScience库的Rational类。这是我在Java中看到的最好的分数算法。
#20
1
I cleaned up cletus' answer:
我清理了cletus的答案:
- Added Javadoc for all methods.
- 为所有方法添加Javadoc。
- Added checks for method preconditions.
- 增加检查方法的先决条件。
- Replaced custom parsing in
valueOf(String)
with theBigInteger(String)
which is both more flexible and faster. - 用BigInteger(String)代替自定义解析(String),它既灵活又快速。
import com.google.common.base.Splitter;
import java.math.BigDecimal;
import java.math.BigInteger;
import java.math.RoundingMode;
import java.util.List;
import java.util.Objects;
import org.bitbucket.cowwoc.preconditions.Preconditions;
/**
* A rational fraction, represented by {@code numerator / denominator}.
* <p>
* This implementation is based on <a
* href="https://*.com/a/474577/14731">https://*.com/a/474577/14731</a>
* <p>
* @author Gili Tzabari
*/
public final class BigRational extends Number implements Comparable<BigRational>
{
private static final long serialVersionUID = 0L;
public static final BigRational ZERO = new BigRational(BigInteger.ZERO, BigInteger.ONE);
public static final BigRational ONE = new BigRational(BigInteger.ONE, BigInteger.ONE);
/**
* Ensures the fraction the denominator is positive and optionally divides the numerator and
* denominator by the greatest common factor.
* <p>
* @param numerator a numerator
* @param denominator a denominator
* @param checkGcd true if the numerator and denominator should be divided by the greatest
* common factor
* @return the canonical representation of the rational fraction
*/
private static BigRational canonical(BigInteger numerator, BigInteger denominator,
boolean checkGcd)
{
assert (numerator != null);
assert (denominator != null);
if (denominator.signum() == 0)
throw new IllegalArgumentException("denominator is zero");
if (numerator.signum() == 0)
return ZERO;
BigInteger newNumerator = numerator;
BigInteger newDenominator = denominator;
if (newDenominator.signum() < 0)
{
newNumerator = newNumerator.negate();
newDenominator = newDenominator.negate();
}
if (checkGcd)
{
BigInteger gcd = newNumerator.gcd(newDenominator);
if (!gcd.equals(BigInteger.ONE))
{
newNumerator = newNumerator.divide(gcd);
newDenominator = newDenominator.divide(gcd);
}
}
return new BigRational(newNumerator, newDenominator);
}
/**
* @param numerator a numerator
* @param denominator a denominator
* @return a BigRational having value {@code numerator / denominator}
* @throws NullPointerException if numerator or denominator are null
*/
public static BigRational valueOf(BigInteger numerator, BigInteger denominator)
{
Preconditions.requireThat(numerator, "numerator").isNotNull();
Preconditions.requireThat(denominator, "denominator").isNotNull();
return canonical(numerator, denominator, true);
}
/**
* @param numerator a numerator
* @param denominator a denominator
* @return a BigRational having value {@code numerator / denominator}
*/
public static BigRational valueOf(long numerator, long denominator)
{
BigInteger bigNumerator = BigInteger.valueOf(numerator);
BigInteger bigDenominator = BigInteger.valueOf(denominator);
return canonical(bigNumerator, bigDenominator, true);
}
/**
* @param value the parameter value
* @param name the parameter name
* @return the BigInteger representation of the parameter
* @throws NumberFormatException if value is not a valid representation of BigInteger
*/
private static BigInteger requireBigInteger(String value, String name)
throws NumberFormatException
{
try
{
return new BigInteger(value);
}
catch (NumberFormatException e)
{
throw (NumberFormatException) new NumberFormatException("Invalid " + name + ": " + value).
initCause(e);
}
}
/**
* @param numerator a numerator
* @param denominator a denominator
* @return a BigRational having value {@code numerator / denominator}
* @throws NullPointerException if numerator or denominator are null
* @throws IllegalArgumentException if numerator or denominator are empty
* @throws NumberFormatException if numerator or denominator are not a valid representation of
* BigDecimal
*/
public static BigRational valueOf(String numerator, String denominator)
throws NullPointerException, IllegalArgumentException, NumberFormatException
{
Preconditions.requireThat(numerator, "numerator").isNotNull().isNotEmpty();
Preconditions.requireThat(denominator, "denominator").isNotNull().isNotEmpty();
BigInteger bigNumerator = requireBigInteger(numerator, "numerator");
BigInteger bigDenominator = requireBigInteger(denominator, "denominator");
return canonical(bigNumerator, bigDenominator, true);
}
/**
* @param value a string representation of a rational fraction (e.g. "12.34e5" or "3/4")
* @return a BigRational representation of the String
* @throws NullPointerException if value is null
* @throws IllegalArgumentException if value is empty
* @throws NumberFormatException if numerator or denominator are not a valid representation of
* BigDecimal
*/
public static BigRational valueOf(String value)
throws NullPointerException, IllegalArgumentException, NumberFormatException
{
Preconditions.requireThat(value, "value").isNotNull().isNotEmpty();
List<String> fractionParts = Splitter.on('/').splitToList(value);
if (fractionParts.size() == 1)
return valueOfRational(value);
if (fractionParts.size() == 2)
return BigRational.valueOf(fractionParts.get(0), fractionParts.get(1));
throw new IllegalArgumentException("Too many slashes: " + value);
}
/**
* @param value a string representation of a rational fraction (e.g. "12.34e5")
* @return a BigRational representation of the String
* @throws NullPointerException if value is null
* @throws IllegalArgumentException if value is empty
* @throws NumberFormatException if numerator or denominator are not a valid representation of
* BigDecimal
*/
private static BigRational valueOfRational(String value)
throws NullPointerException, IllegalArgumentException, NumberFormatException
{
Preconditions.requireThat(value, "value").isNotNull().isNotEmpty();
BigDecimal bigDecimal = new BigDecimal(value);
int scale = bigDecimal.scale();
BigInteger numerator = bigDecimal.unscaledValue();
BigInteger denominator;
if (scale > 0)
denominator = BigInteger.TEN.pow(scale);
else
{
numerator = numerator.multiply(BigInteger.TEN.pow(-scale));
denominator = BigInteger.ONE;
}
return canonical(numerator, denominator, true);
}
private final BigInteger numerator;
private final BigInteger denominator;
/**
* @param numerator the numerator
* @param denominator the denominator
* @throws NullPointerException if numerator or denominator are null
*/
private BigRational(BigInteger numerator, BigInteger denominator)
{
Preconditions.requireThat(numerator, "numerator").isNotNull();
Preconditions.requireThat(denominator, "denominator").isNotNull();
this.numerator = numerator;
this.denominator = denominator;
}
/**
* @return the numerator
*/
public BigInteger getNumerator()
{
return numerator;
}
/**
* @return the denominator
*/
public BigInteger getDenominator()
{
return denominator;
}
@Override
@SuppressWarnings("AccessingNonPublicFieldOfAnotherObject")
public int compareTo(BigRational other)
{
Preconditions.requireThat(other, "other").isNotNull();
// canonical() ensures denominator is positive
if (numerator.signum() != other.numerator.signum())
return numerator.signum() - other.numerator.signum();
// Set the denominator to a common multiple before comparing the numerators
BigInteger first = numerator.multiply(other.denominator);
BigInteger second = other.numerator.multiply(denominator);
return first.compareTo(second);
}
/**
* @param other another rational fraction
* @return the result of adding this object to {@code other}
* @throws NullPointerException if other is null
*/
@SuppressWarnings("AccessingNonPublicFieldOfAnotherObject")
public BigRational add(BigRational other)
{
Preconditions.requireThat(other, "other").isNotNull();
if (other.numerator.signum() == 0)
return this;
if (numerator.signum() == 0)
return other;
if (denominator.equals(other.denominator))
return new BigRational(numerator.add(other.numerator), denominator);
return canonical(numerator.multiply(other.denominator).
add(other.numerator.multiply(denominator)),
denominator.multiply(other.denominator), true);
}
/**
* @param other another rational fraction
* @return the result of subtracting {@code other} from this object
* @throws NullPointerException if other is null
*/
@SuppressWarnings("AccessingNonPublicFieldOfAnotherObject")
public BigRational subtract(BigRational other)
{
return add(other.negate());
}
/**
* @param other another rational fraction
* @return the result of multiplying this object by {@code other}
* @throws NullPointerException if other is null
*/
@SuppressWarnings("AccessingNonPublicFieldOfAnotherObject")
public BigRational multiply(BigRational other)
{
Preconditions.requireThat(other, "other").isNotNull();
if (numerator.signum() == 0 || other.numerator.signum() == 0)
return ZERO;
if (numerator.equals(other.denominator))
return canonical(other.numerator, denominator, true);
if (other.numerator.equals(denominator))
return canonical(numerator, other.denominator, true);
if (numerator.negate().equals(other.denominator))
return canonical(other.numerator.negate(), denominator, true);
if (other.numerator.negate().equals(denominator))
return canonical(numerator.negate(), other.denominator, true);
return canonical(numerator.multiply(other.numerator), denominator.multiply(other.denominator),
true);
}
/**
* @param other another rational fraction
* @return the result of dividing this object by {@code other}
* @throws NullPointerException if other is null
*/
public BigRational divide(BigRational other)
{
return multiply(other.invert());
}
/**
* @return true if the object is a whole number
*/
public boolean isInteger()
{
return numerator.signum() == 0 || denominator.equals(BigInteger.ONE);
}
/**
* Returns a BigRational whose value is (-this).
* <p>
* @return -this
*/
public BigRational negate()
{
return new BigRational(numerator.negate(), denominator);
}
/**
* @return a rational fraction with the numerator and denominator swapped
*/
public BigRational invert()
{
return canonical(denominator, numerator, false);
}
/**
* @return the absolute value of this {@code BigRational}
*/
public BigRational abs()
{
if (numerator.signum() < 0)
return negate();
return this;
}
/**
* @param exponent exponent to which both numerator and denominator is to be raised.
* @return a BigRational whose value is (this<sup>exponent</sup>).
*/
public BigRational pow(int exponent)
{
return canonical(numerator.pow(exponent), denominator.pow(exponent), true);
}
/**
* @param other another rational fraction
* @return the minimum of this object and the other fraction
*/
public BigRational min(BigRational other)
{
if (compareTo(other) <= 0)
return this;
return other;
}
/**
* @param other another rational fraction
* @return the maximum of this object and the other fraction
*/
public BigRational max(BigRational other)
{
if (compareTo(other) >= 0)
return this;
return other;
}
/**
* @param scale scale of the BigDecimal quotient to be returned
* @param roundingMode the rounding mode to apply
* @return a BigDecimal representation of this object
* @throws NullPointerException if roundingMode is null
*/
public BigDecimal toBigDecimal(int scale, RoundingMode roundingMode)
{
Preconditions.requireThat(roundingMode, "roundingMode").isNotNull();
if (isInteger())
return new BigDecimal(numerator);
return new BigDecimal(numerator).divide(new BigDecimal(denominator), scale, roundingMode);
}
@Override
public int intValue()
{
return (int) longValue();
}
@Override
public long longValue()
{
if (isInteger())
return numerator.longValue();
return numerator.divide(denominator).longValue();
}
@Override
public float floatValue()
{
return (float) doubleValue();
}
@Override
public double doubleValue()
{
if (isInteger())
return numerator.doubleValue();
return numerator.doubleValue() / denominator.doubleValue();
}
@Override
@SuppressWarnings("AccessingNonPublicFieldOfAnotherObject")
public boolean equals(Object o)
{
if (this == o)
return true;
if (!(o instanceof BigRational))
return false;
BigRational other = (BigRational) o;
return numerator.equals(other.denominator) && Objects.equals(denominator, other.denominator);
}
@Override
public int hashCode()
{
return Objects.hash(numerator, denominator);
}
/**
* Returns the String representation: {@code numerator / denominator}.
*/
@Override
public String toString()
{
if (isInteger())
return String.format("%,d", numerator);
return String.format("%,d / %,d", numerator, denominator);
}
}
#21
0
Initial remark:
最初的备注:
Never write this:
从来没有这样写:
if ( condition ) statement;
This is much better
这是更好的
if ( condition ) { statement };
Just create to create a good habit.
只是创造一个好习惯。
By making the class immutable as suggested, you can also take advantage of the double to perform the equals and hashCode and compareTo operations
通过使类不可变,您还可以利用double来执行equals和hashCode和compareTo操作。
Here's my quick dirty version:
这是我的快速脏版:
public final class Fraction implements Comparable {
private final int numerator;
private final int denominator;
private final Double internal;
public static Fraction createFraction( int numerator, int denominator ) {
return new Fraction( numerator, denominator );
}
private Fraction(int numerator, int denominator) {
this.numerator = numerator;
this.denominator = denominator;
this.internal = ((double) numerator)/((double) denominator);
}
public int getNumerator() {
return this.numerator;
}
public int getDenominator() {
return this.denominator;
}
private double doubleValue() {
return internal;
}
public int compareTo( Object o ) {
if ( o instanceof Fraction ) {
return internal.compareTo( ((Fraction)o).internal );
}
return 1;
}
public boolean equals( Object o ) {
if ( o instanceof Fraction ) {
return this.internal.equals( ((Fraction)o).internal );
}
return false;
}
public int hashCode() {
return internal.hashCode();
}
public String toString() {
return String.format("%d/%d", numerator, denominator );
}
public static void main( String [] args ) {
System.out.println( Fraction.createFraction( 1 , 2 ) ) ;
System.out.println( Fraction.createFraction( 1 , 2 ).hashCode() ) ;
System.out.println( Fraction.createFraction( 1 , 2 ).compareTo( Fraction.createFraction(2,4) ) ) ;
System.out.println( Fraction.createFraction( 1 , 2 ).equals( Fraction.createFraction(4,8) ) ) ;
System.out.println( Fraction.createFraction( 3 , 9 ).equals( Fraction.createFraction(1,3) ) ) ;
}
}
About the static factory method, it may be useful later, if you subclass the Fraction to handle more complex things, or if you decide to use a pool for the most frequently used objects.
关于静态工厂方法,如果您子类化这个分数来处理更复杂的事情,或者您决定为最常用的对象使用一个池,那么它可能会很有用。
It may not be the case, I just wanted to point it out. :)
也许不是这样,我只是想指出来。:)
See Effective Java first item.
参见有效的Java第一项。
#22
0
Might be useful to add simple things like reciprocate, get remainder and get whole.
可能有用的是添加一些简单的东西,比如回报,得到剩余,得到整体。
#23
0
Even though you have the methods compareTo(), if you want to make use of utilities like Collections.sort(), then you should also implement Comparable.
即使您有方法compareTo(),如果您想要使用像Collections.sort()这样的工具,那么您也应该实现可比较的。
public class Fraction extends Number implements Comparable<Fraction> {
...
}
Also, for pretty display I recommend overriding toString()
同样,对于漂亮的显示,我建议重写toString()
public String toString() {
return this.getNumerator() + "/" + this.getDenominator();
}
And finally, I'd make the class public so that you can use it from different packages.
最后,我将使类公开,以便您可以从不同的包中使用它。
#24
0
This function simplify using the eucledian algorithm is quite useful when defining fractions
在定义分数时,这个函数简化了使用eucledian算法。
public Fraction simplify(){
int safe;
int h= Math.max(numerator, denominator);
int h2 = Math.min(denominator, numerator);
if (h == 0){
return new Fraction(1,1);
}
while (h>h2 && h2>0){
h = h - h2;
if (h>h2){
safe = h;
h = h2;
h2 = safe;
}
}
return new Fraction(numerator/h,denominator/h);
}
#25
0
For industry-grade Fraction/Rational implementation, I would implement it so it can represent NaN, positive infinity, negative infinity, and optionally negative zero with operational semantics exactly the same as the IEEE 754 standard states for floating point arithmetics (it also eases the conversion to/from floating point values). Plus, since comparison to zero, one, and the special values above only needs simple, but combined comparison of the numerator and denominator against 0 and 1 - i would add several isXXX and compareToXXX methods for ease of use (eg. eq0() would use numerator == 0 && denominator != 0 behind the scenes instead of letting the client to compare against a zero valued instance). Some statically predefined values (ZERO, ONE, TWO, TEN, ONE_TENTH, NAN, etc.) are also useful, since they appear at several places as constant values. This is the best way IMHO.
对于行业级的分数/Rational实现,我将实现它,这样它就可以代表NaN、正无穷大、负无穷大,以及可选的负零,其运算语义与IEEE 754标准状态下的浮点运算符完全相同(它也简化了浮点值的转换)。另外,由于与0比较,1和上面的特殊值只需要简单的,但是分子和分母的比较是0和1,我将添加几个isXXX和compareToXXX方法来方便使用(如。eq0()将使用分子== 0 &&分母!= 0,而不是让客户端与一个零值实例进行比较。一些静态预定义的值(0、1、2、10、1 / 10、NAN等)也很有用,因为它们在几个地方以常量值出现。这是IMHO的最佳方式。