dp背包问题

时间:2021-02-22 07:04:08
  • 0-1背包

1、问题定义:

  给定n种物品和背包。物品i的重量是wi,价值是vi,每种物品只有一个,背包容量为C。问:应该如何选择装入背包的物品,使得装入背包中的物品总值最大。

2、算法思路:

  选择装入背包的物品时,对于物品i,只有两种选择,一种是装入,一种是不装入。定义m[i][j]表示背包容量为j,给定编号1-i号物品时,背包装入物品的最大价值。

初始化矩阵m:当只有物品1时,背包容量大于物品1的体积,放入。背包容量小于物品1的体积时,不放入。

dp背包问题

同理,对于第i件物品,如果放入可以使得背包的价值增大且不超过背包容量,就放入,反之,不放入。

dp背包问题

3、具体代码:

int N = ;
void knapsack(int *v, int *w, int c, int m[N+][]) {
int min = w[] > c ? c : w[];
for(int j = ; j < min; j++)
m[][j] =
for(int j = w[]; j <= c; j++)
m[][j] = v[]; for(int i = ; i <= N; i++){
min = w[i] > c ? c : w[i]
for(int j = ; j < min; j++)
m[i][j] = m[i-][j];
for(int j = w[i]; j < c; j++)
m[i][j] = m[i-][j-w[i]] + v[i] > m[i-][j] ? m[i-][j-w[i]] + v[i] : m[i-][j]
}
}
//x[N+1]存放取得最大价值的背包中放入的物品,x[i] = 1表示放入了物品i,x[i] = 0表示没有放入。
void traceback(int m[N+][], int *w, int c, int *x){
for(int i = n; i>; i++){
if(m[i][c] == m[i-][c])
x[i] == ;
else
{
x[i] = ;
c -= w[i];
}
}
x[] = m[][c] > ? :
}
  • 完全背包

问题定义:

  给定n种物品和背包。物品i的重量是wi,价值是vi,每种物品有无限个,背包容量为C。问:应该如何选择装入背包的物品,使得装入背包中的物品总值最大。

算法思路:

  对于0-1背包问题,是否放入第i件物品取决于选取1到i-1件物品中若干件放入背包后的状态,因为每种物品只有一件,放与不放都会影响后续物品是否能放入。对于完全背包问题,  每次加入一个新的物品类别i时,都要对背包的不同容量下的价值进行更新,因为在未加入新的物品类别i时,1-i号物品已经将背包装满了。因此m[i][j]的值与m[i-1]无关。

具体算法:

#include<iostream>
#include<string.h>
#include<limits>
using namespace std;
void C_backpack(int *v, int *w, int c, int n, int *m, int *ans){
for(int i = ; i <= c; i++){
m[i] = ;
ans[i] = ;
} for(int i = ; i <= n; i++){
for(int j = w[i]; j <= c; j++){
if(m[j-w[i]] + v[i] > m[j]){
m[j] = m[j-w[i]]+v[i];
ans[j] = i;
}
}
}
}
void traceback(int *ans, int *x, int c, int *w){
while(c > ){
int id = ans[c];
x[id] ++;
c -= w[id];
}
}
int main(){
int c = , n = ;
//ans[i]表示当背包容积为j时放入的最后一个物品的编号,用来回溯得到每个物品被放入背包的个数
int ans[c+], w[n+] = {INT_MAX, , , }, v[n+] = {, , , };
int m[c+], x[n+]; //记录每个物品被放入背包的个数
memset(x , , sizeof(x));
C_backpack(v, w, c, n, m, ans);
traceback(ans, x, c, w);
for(int i = ; i <= n; i++)
cout<<x[i]<<" ";
cout<<endl;
cout<<m[c];
}

运行结果:

dp背包问题