Description
几乎所有操作系统的命令行界面(CLI)中都支持文件名的通配符匹配以方便用户。最常见的通配符有两个,一个
是星号(“”’),可以匹配0个及以上的任意字符:另一个是问号(“?”),可以匹配恰好一个任意字符。
现在需要你编写一个程序,对于给定的文件名列表和一个包含通配符的字符串,判断哪些文件可以被匹配。Input
第一行是一个由小写字母和上述通配符组成的字符串。
第二行包含一个整数n,表示文件个数。
接下来n行,每行为一个仅包含小写字母字符串,表示文件名列表。Output
输出n行,每行为“YES”或“NO”,表示对应文件能否被通配符匹配。
Sample Input
*aca?ctc
6
acaacatctc
acatctc
aacacatctc
aggggcaacacctc
aggggcaacatctc
aggggcaacctct
Sample Output
YES
YES
YES
YES
YES
NO
HINT
对于1 00%的数据
·字符串长度不超过1 00000
·1 <=n<=100
·通配符个数不超过10
dp一下,设$f_{i,j}$表示匹配到第$i$个通配符,第$j$个字符是否可行
分*和?来递推
有一个小姿势,就是在原串和匹配串后面都加一个?,好像挺有用的..
mdzz hash天天被卡..
1 #include <cstdio>View Code
2 #include <cstring>
3 #include <cstdlib>
4 #include <algorithm>
5 #define LL long long
6 using namespace std;
7 const LL Maxn = 100010;
8 const LL Mod = 1e9+7;
9 bool f[15][Maxn];
10 char s[Maxn], st[Maxn]; LL len, stl;
11 LL ps[Maxn], pst[Maxn], cf[Maxn];
12 LL hash ( LL *a, LL x, LL y ){
13 return (a[y]-(a[x-1]*cf[y-x+1])%Mod+Mod)%Mod;
14 }
15 LL pos[15], pl, n;
16 int main (){
17 LL i, j, k;
18 scanf ( "%s", s+1 );
19 len = strlen (s+1);
20 cf[1] = 26;
21 for ( i = 2; i <= 100000; i ++ ) cf[i] = (cf[i-1]*26)%Mod;
22 for ( i = 1; i <= len; i ++ ){
23 if ( s[i] >= 'a' && s[i] <= 'z' ) ps[i] = ((ps[i-1]*26)%Mod+s[i]-'a')%Mod;
24 else {
25 ps[i] = (ps[i-1]*26)%Mod;
26 pos[++pl] = i;
27 }
28 }
29 ps[++len] = '?';
30 pos[++pl] = len;
31 scanf ( "%lld", &n );
32 while ( n -- ){
33 scanf ( "%s", st+1 );
34 stl = strlen (st+1);
35 for ( i = 1; i <= stl; i ++ ) pst[i] = ((pst[i-1]*26)%Mod+st[i]-'a')%Mod;
36 st[++stl] = '?';
37 memset ( f, false, sizeof (f) );
38 f[0][0] = true;
39 for ( i = 1; i <= pl; i ++ ){
40 if ( s[pos[i]] == '*' ){
41 for ( j = 1; j <= stl; j ++ ){
42 if ( j-(pos[i]-pos[i-1]) < 0 ) continue;
43 if ( f[i-1][j-(pos[i]-pos[i-1])] == true ){
44 if ( pos[i] == pos[i-1]+1 ) break;
45 else if ( hash ( ps, pos[i-1]+1, pos[i]-1 ) == hash ( pst, j-(pos[i]-pos[i-1])+1, j-1 ) ) break;
46 }
47 }
48 for ( j = j-1; j <= stl; j ++ ) f[i][j] = true;
49 }
50 else {
51 for ( j = 1; j <= stl; j ++ ){
52 if ( j-(pos[i]-pos[i-1]) < 0 ) continue;
53 if ( f[i-1][j-(pos[i]-pos[i-1])] == true ){
54 if ( pos[i] == pos[i-1]+1 ) f[i][j] = true;
55 else if ( hash ( ps, pos[i-1]+1, pos[i]-1 ) == hash ( pst, j-(pos[i]-pos[i-1])+1, j-1 ) ) f[i][j] = true;
56 }
57 }
58 }
59 }
60 if ( f[pl][stl] == true ) printf ( "YES\n" );
61 else printf ( "NO\n" );
62 }
63 return 0;
64 }