Codeforces 776E: The Holmes Children (数论 欧拉函数)

时间:2021-07-10 04:47:10

题目链接

先看题目中给的函数f(n)和g(n)

  对于f(n),若自然数对(x,y)满足 x+y=n,且gcd(x,y)=1,则这样的数对对数为f(n)

证明f(n)=phi(n)

    设有命题 对任意自然数x满足x<n,gcd(x,n)=1等价于gcd(x,y)=1  成立,则该式显然成立,下面证明这个命题。

    假设gcd(x,y)=1时,gcd(x,n)=k!=1,则n=n'k,x=x'k,gcd(x,y)=gcd(x,n-x)=gcd(x'k,(n'-x')k)=k,与假设gcd(x,y)=1不符,故gcd(x,y)=1时,gcd(x,n)=1。同理可证gcd(x,n)=1时,gcd(x,y)=1。

    综上,f(n)=phi(n)

  对于g(n),Codeforces 776E: The Holmes Children (数论 欧拉函数),这个本人就不在博客里献丑了,推荐找本专门讲数论的书看下,估计都会有,这个可以当成是结论用,即 n的所有因数的欧拉函数之和等于n本身

解决了函数f(n)和g(n)的意义,剩下的就好解多了

时间上,由于连续进行两次n=phi(n)的运算至少可以将n减小为原来的一半,故肯定是不会T啦

#include<bits/stdc++.h>
using namespace std;
typedef long long LL; //单独求解单个phi(x)
LL Eular(LL n)
{
LL ret=n;
for(LL i=; i*i<= n; i++)
if(n%i==)
{
ret-=ret/i;
while(n%i==) n/= i;
}
if(n>) ret-=ret/n;
return ret;
} LL n,k; int main()
{
while(cin>>n>>k)
{
k=(k+)/;
while(k-- && n>)
n=Eular(n);
cout<<n%<<endl;
}
}