看了一点《数据算法:Hadoop/Spark大数据处理技巧》,觉得有必要了解一下 Spark 。
以上。
Spark was introduced by Apache Software Foundation for speeding up the Hadoop computational computing software process.
As against a common belief, Spark is not a modified version of Hadoop and is not, really, dependent on Hadoop because it has its own cluster management. Hadoop is just one of the ways to implement Spark.
Spark uses Hadoop in two ways – one is storage and second is processing. Since Spark has its own cluster management computation, it uses Hadoop for storage purpose only.
Hadoop 是对大数据集进行分布式计算的标准工具,允许使用相对便宜的商业硬件集群进行超级计算机级别的计算。不过,Hadoop 也存在很多已知限制。比如说 MapReduce 作业的 I/O 成本很高,导致交互分析和迭代算法(iterative algorithms)开销很大。但是事实上,几乎所有的最优化和机器学习都是迭代的。为了解决这些问题,Hadoop 一直在向一种更为通用的资源管理框架转变,即 YARN(Yet Another Resource Negotiator, 又一个资源协调者)。而 Spark 是第一个脱胎于该转变的快速、通用分布式计算范式,拥有自己的集群管理方式,并不是 Hadoop 的一个新版本。Hadoop 只是 Spark 实现方式的一种,而且只是用来存储数据。
Apache Spark
Apache Spark is a lightning-fast cluster computing technology, designed for fast computation. It is based on Hadoop MapReduce and it extends the MapReduce model to efficiently use it for more types of computations, which includes interactive queries and stream processing. The main feature of Spark is its in-memory cluster computing that increases the processing speed of an application.
Spark is designed to cover a wide range of workloads such as batch applications, iterative algorithms, interactive queries and streaming. Apart from supporting all these workload in a respective system, it reduces the management burden of maintaining separate tools.
Spark 是个轻量快速的集群计算技术,设计成能进行快速的计算。使用函数式编程范式扩展了 MapReduce 模型以支持更多计算类型,可以涵盖广泛的工作流,这些工作流之前被实现为 Hadoop 之上的特殊系统。Spark 使用内存缓存来提升性能,因此进行交互式分析也足够快速。缓存同时提升了迭代算法的性能,这使得 Spark 非常适合数据理论任务,特别是机器学习。
Evolution of Apache Spark
Spark is one of Hadoop’s sub project developed in 2009 in UC Berkeley’s AMPLab by Matei Zaharia. It was Open Sourced in 2010 under a BSD license. It was donated to Apache software foundation in 2013, and now Apache Spark has become a top level Apache project from Feb-2014.
Spark 由 UC(University of California) Berkeley AMP lab (加州大学伯克利分校的AMP实验室) 开发。
Features of Apache Spark
Apache Spark has following features.
- Speed − Spark helps to run an application in Hadoop cluster, up to 100 times faster in memory, and 10 times faster when running on disk. This is possible by reducing number of read/write operations to disk. It stores the intermediate processing data in memory.
- Supports multiple languages − Spark provides built-in APIs in Java, Scala, or Python. Therefore, you can write applications in different languages. Spark comes up with 80 high-level operators for interactive querying.
- Advanced Analytics − Spark not only supports ‘Map’ and ‘reduce’. It also supports SQL queries, Streaming data, Machine learning (ML), and Graph algorithms.
Spark Built on Hadoop
The following diagram shows three ways of how Spark can be built with Hadoop components.
There are three ways of Spark deployment as explained below.
- Standalone − Spark Standalone deployment means Spark occupies the place on top of HDFS(Hadoop Distributed File System) and space is allocated for HDFS, explicitly. Here, Spark and MapReduce will run side by side to cover all spark jobs on cluster.
- Hadoop Yarn − Hadoop Yarn deployment means, simply, spark runs on Yarn without any pre-installation or root access required. It helps to integrate Spark into Hadoop ecosystem or Hadoop stack. It allows other components to run on top of stack.
- Spark in MapReduce (SIMR) − Spark in MapReduce is used to launch spark job in addition to standalone deployment. With SIMR, user can start Spark and uses its shell without any administrative access.
Components of Spark
The following illustration depicts the different components of Spark.
Apache Spark Core
Spark Core is the underlying general execution engine for spark platform that all other functionality is built upon. It provides In-Memory computing and referencing datasets in external storage systems.
包含Spark的基本功能;尤其是定义RDD的API、操作以及这两者上的动作。
Spark SQL
Spark SQL is a component on top of Spark Core that introduces a new data abstraction called SchemaRDD, which provides support for structured and semi-structured data.
Spark Streaming
Spark Streaming leverages Spark Core's fast scheduling capability to perform streaming analytics. It ingests data in mini-batches and performs RDD (Resilient Distributed Datasets) transformations on those mini-batches of data.
MLlib (Machine Learning Library)
MLlib is a distributed machine learning framework above Spark because of the distributed memory-based Spark architecture. It is, according to benchmarks, done by the MLlib developers against the Alternating Least Squares (ALS) implementations. Spark MLlib is nine times as fast as the Hadoop disk-based version of Apache Mahout (before Mahout gained a Spark interface).
一个常用机器学习算法库,算法被实现为对 RDD 的 Spark 操作。
GraphX
GraphX is a distributed graph-processing framework on top of Spark. It provides an API for expressing graph computation that can model the user-defined graphs by using Pregel abstraction API. It also provides an optimized runtime for this abstraction.
Spark 库本身包含很多应用元素,这些元素可以用到大部分大数据应用中,其中包括对大数据进行类似 SQL 查询的支持,机器学习和图算法,甚至对实时流数据的支持。
参考资料
Apache Spark : Introduction的更多相关文章
-
CS100.1x Introduction to Big Data with Apache Spark
CS100.1x简介 这门课主要讲数据科学,也就是data science以及怎么用Apache Spark去分析大数据. Course Software Setup 这门课主要介绍如何编写和调试Py ...
-
Apache Spark源码走读之5 -- DStream处理的容错性分析
欢迎转载,转载请注明出处,徽沪一郎,谢谢. 在流数据的处理过程中,为了保证处理结果的可信度(不能多算,也不能漏算),需要做到对所有的输入数据有且仅有一次处理.在Spark Streaming的处理机制 ...
-
Spark(1) - Getting Started with Apache Spark
Introduction Apache Spark is a general-purpose cluster computing system to process big data workload ...
-
Introducing Apache Spark Datasets(中英双语)
文章标题 Introducing Apache Spark Datasets 作者介绍 Michael Armbrust, Wenchen Fan, Reynold Xin and Matei Zah ...
-
.net 开发者尝试Apache Spark™
本文编译自一篇msdn magazine的文章,原文标题和链接为: Test Run - Introduction to Spark for .NET Developers https://msdn. ...
-
Apache Spark大数据分析入门(一)
摘要:Apache Spark的出现让普通人也具备了大数据及实时数据分析能力.鉴于此,本文通过动手实战操作演示带领大家快速地入门学习Spark.本文是Apache Spark入门系列教程(共四部分)的 ...
-
Apache Spark简单介绍、安装及使用
Apache Spark简介 Apache Spark是一个高速的通用型计算引擎,用来实现分布式的大规模数据的处理任务. 分布式的处理方式可以使以前单台计算机面对大规模数据时处理不了的情况成为可能. ...
-
关于Apache Spark
Apache Spark : https://www.oschina.net/p/spark-project
-
Apache Spark源码剖析
Apache Spark源码剖析(全面系统介绍Spark源码,提供分析源码的实用技巧和合理的阅读顺序,充分了解Spark的设计思想和运行机理) 许鹏 著 ISBN 978-7-121-25420- ...
随机推荐
-
Devexpress GridView 列中显示图片
首先将图片添加到ImageList中 添加GridView中Column void gridView1_CustomUnboundColumnData(object sender, DevExpres ...
-
AngularJS之Directive(三)
前言 angular核心部分如下图几大块,最重要的莫过于指令这一部分,本文将重点讲解指令这一部分,后续笔者将通过陆续的学习来叙述其他如:factory.service等,若有叙述错误之处,欢迎各位指正 ...
-
Java学习笔记二——标识符和关键字
标识符 定义 标识符的定义:对各种变量.方法和类等要素命名时使用的字符序列成为标识符. 简单地说,就是凡是自己可以起名字的地方都叫标识符,都要遵守标识符的规则. 命名规则 标识符只能由字母.下划线&q ...
-
Jenkins+CCNET的另类部署图
最近公司的CI系统升级,从CCNET换成Jenkins进行搭建,原因是Jenkins支持所有语言,不再是单一的dotnet语言支持,并且以节点的形式能做分布式自动构建,非常节省配置成功. 而且从MSB ...
-
DOS下更改编码方式
使用CHCP命令,CHCP是Change Code Page的缩写. 936 简体中文GBK 437 美国英语 65001 UTF编码 如:chcp 65001则将dos窗口中的字符编码改为UTF编码 ...
-
《程序员的思维修炼》摘抄start:2014年9月27日19:27:07
程序员的思维修炼:摘抄:考虑到社会中各个相关团体的复杂交互影响和社会的持续变化,在我看来当前最重要的两项技能就是: ▪沟通能力: ▪学习和思考能力.软件行业正在逐步提高沟通能力.特别是敏捷方法(见注解 ...
-
SimpleDateFormat 的线程安全问题与解决方式
SimpleDateFormat 的线程安全问题 SimpleDateFormat 是一个以国别敏感的方式格式化和分析数据的详细类. 它同意格式化 (date -> text).语法分析 (te ...
-
AutoHotkey 自动化脚本工具实例
AHK 自动按键工具 https://www.autohotkey.com/ 可实现功能 快捷键 启动 浏览器.CMD命令.弹出框 可定时执行任务 可改键 将A与B互换 可快捷替换字符串 测试如下: ...
-
serialize()与serializeArray()
1.了解serialize()与serializeArray() serialize()序列化表单元素,用于ajax请求, serializeArray()序列化表单元素,类似于serialize,但 ...
-
Python:Day40 html
URL包括三个部分:协议.域名.路径 htyper text markup language (html) 即超文本标记语言 前端一共包括三个内容:html.css.js html做为基础,让CSS ...