分布式系统里的Shuffle 阶段往往是非常复杂的,而且分支条件也多,我只能按着我关注的线去描述。肯定会有不少谬误之处,我会根据自己理解的深入,不断更新这篇文章。
前言
借用和董神的一段对话说下背景:
shuffle共有三种,别人讨论的是hash shuffle,这是最原始的实现,曾经有两个版本,第一版是每个map产生r个文件,一共产生mr个文件,由于产生的中间文件太大影响扩展性,社区提出了第二个优化版本,让一个core上map共用文件,减少文件数目,这样共产生corer个文件,好多了,但中间文件数目仍随任务数线性增加,仍难以应对大作业,但hash shuffle已经优化到头了。为了解决hash shuffle性能差的问题,又引入sort shuffle,完全借鉴mapreduce实现,每个map产生一个文件,彻底解决了扩展性问题
目前Sort Based Shuffle 是作为默认Shuffle类型的。Shuffle 是一个很复杂的过程,任何一个环节都足够写一篇文章。所以这里,我尝试换个方式,从实用的角度出发,让读者有两方面的收获:
- 剖析哪些环节,哪些代码可能会让内存产生问题
- 控制相关内存的参数
有时候,我们宁可程序慢点,也不要OOM,至少要先跑步起来,希望这篇文章能够让你达成这个目标。
同时我们会提及一些类名,这些类方便你自己想更深入了解时,可以方便的找到他们,自己去探个究竟。
Shuffle 概览
Spark 的Shuffle 分为 Write,Read 两阶段。我们预先建立三个概念:
Write 对应的是ShuffleMapTask,具体的写操作ExternalSorter来负责
Read 阶段由ShuffleRDD里的HashShuffleReader来完成。如果拉来的数据如果过大,需要落地,则也由ExternalSorter来完成的
所有Write 写完后,才会执行Read。 他们被分成了两个不同的Stage阶段。
也就是说,Shuffle Write ,Shuffle Read 两阶段都可能需要落磁盘,并且通过Disk Merge 来完成最后的Sort归并排序。
Shuffle Write 内存消耗分析
Shuffle Write 的入口链路为:
org.apache.spark.scheduler.ShuffleMapTask
---> org.apache.spark.shuffle.sort.SortShuffleWriter
---> org.apache.spark.util.collection.ExternalSorter
会产生内存瓶颈的其实就是 org.apache.spark.util.collection.ExternalSorter
。我们看看这个复杂的ExternalSorter都有哪些地方在占用内存:
第一个地:
private var map = new PartitionedAppendOnlyMap[K, C]
我们知道,数据都是先写内存,内存不够了,才写磁盘。这里的map就是那个放数据的内存了。
这个PartitionedAppendOnlyMap
内部维持了一个数组,是这样的:
private var data = new Array[AnyRef]( * capacity)
也就是他消耗的并不是Storage的内存,所谓Storage内存,指的是由blockManager管理起来的内存。
PartitionedAppendOnlyMap 放不下,要落地,那么不能硬生生的写磁盘,所以需要个buffer,然后把buffer再一次性写入磁盘文件。这个buffer是由参数
spark.shuffle.file.buffer=32k
控制的。数据获取的过程中,序列化反序列化,也是需要空间的,所以Spark 对数量做了限制,通过如下参数控制:
spark.shuffle.spill.batchSize=
假设一个Executor的可使用的Core为 C个,那么对应需要的内存消耗为:
C * 32k + C * 10000个Record + C * PartitionedAppendOnlyMap
这么看来,写文件的buffer不是问题,而序列化的batchSize也不是问题,几万或者十几万个Record 而已。那C * PartitionedAppendOnlyMap 到底会有多大呢?我先给个结论:
C * PartitionedAppendOnlyMap < ExecutorHeapMemeory * 0.2 * 0.8
怎么得到上面的结论呢?核心店就是要判定PartitionedAppendOnlyMap
需要占用多少内存,而它到底能占用内存,则由触发写磁盘动作决定,因为一旦写磁盘,PartitionedAppendOnlyMap所占有的内存就会被释放。下面是判断是否写磁盘的逻辑代码:
estimatedSize = map.estimateSize()
if (maybeSpill(map, estimatedSize)) {
map = new PartitionedAppendOnlyMap[K, C]
}
每放一条记录,就会做一次内存的检查,看PartitionedAppendOnlyMap
到底占用了多少内存。如果真是这样,假设检查一次内存1ms, 1kw 就不得了的时间了。所以肯定是不行的,所以 estimateSize
其实是使用采样算法来做的。
第二个,我们也不希望mayBeSpill
太耗时,所以 maybeSpill
方法里就搞了很多东西,减少耗时。我们看看都设置了哪些防线
首先会判定要不要执行内部逻辑:
elementsRead % == && currentMemory >= myMemoryThreshold
每隔32次会进行一次检查,并且要当前PartitionedAppendOnlyMap
currentMemory > myMemoryThreshold 才会进一步判定是不是要spill.
其中 myMemoryThreshold可通过如下配置获得初始值
spark.shuffle.spill.initialMemoryThreshold = * *
接着会向 shuffleMemoryManager 要 2 * currentMemory - myMemoryThreshold
的内存,shuffleMemoryManager 是被Executor 所有正在运行的Task(Core) 共享的,能够分配出去的内存是:
ExecutorHeapMemeory * 0.2 * 0.8
上面的数字可通过下面两个配置来更改:
spark.shuffle.memoryFraction=0.2
spark.shuffle.safetyFraction=0.8
如果无法获取到足够的内存,就会触发真的spill操作了。
看到这里,上面的结论就显而易见了。
然而,这里我们忽略了一个很大的问题,就是
estimatedSize = map.estimateSize()
为什么说它是大问题,前面我们说了,estimateSize 是近似估计,所以有可能估的不准,也就是实际内存会远远超过预期。
具体的大家可以看看 org.apache.spark.util.collection.SizeTracker
我这里给出一个结论:
如果你内存开的比较大,其实反倒风险更高,因为estimateSize 并不是每次都去真实的算缓存。它是通过采样来完成的,而采样的周期不是固定的,而是指数增长的,比如第一次采样完后,PartitionedAppendOnlyMap 要经过1.1次的update/insert操作之后才进行第二次采样,然后经过1.1*.1.1次之后进行第三次采样,以此递推,假设你内存开的大,那PartitionedAppendOnlyMap可能要经过几十万次更新之后之后才会进行一次采样,然后才能计算出新的大小,这个时候几十万次更新带来的新的内存压力,可能已经让你的GC不堪重负了。
当然,这是一种折中,因为确实不能频繁采样。
如果你不想出现这种问题,要么自己替换实现这个类,要么将
spark.shuffle.safetyFraction=0.8
设置的更小一些。
Shuffle Read 内存消耗分析
Shuffle Read 的入口链路为:
org.apache.spark.rdd.ShuffledRDD
---> org.apache.spark.shuffle.sort.HashShuffleReader
---> org.apache.spark.util.collection.ExternalAppendOnlyMap
---> org.apache.spark.util.collection.ExternalSorter
Shuffle Read 会更复杂些,尤其是从各个节点拉取数据。但这块不是不是我们的重点。按流程,主要有:
- 获取待拉取数据的迭代器
- 使用AppendOnlyMap/ExternalAppendOnlyMap 做combine
- 如果需要对key排序,则使用ExternalSorter
其中1后续会单独列出文章。3我们在write阶段已经讨论过。所以这里重点是第二个步骤,combine阶段。
如果你开启了
spark.shuffle.spill=true
则使用ExternalAppendOnlyMap,否则使用AppendOnlyMap。两者的区别是,前者如果内存不够,则落磁盘,会发生spill操作,后者如果内存不够,直接OOM了。
这里我们会重点分析ExternalAppendOnlyMap。
ExternalAppendOnlyMap 作为内存缓冲数据的对象如下:
private var currentMap = new SizeTrackingAppendOnlyMap[K, C]
如果currentMap 对象向申请不到内存,就会触发spill动作。判定内存是否充足的逻辑和Shuffle Write 完全一致。
Combine做完之后,ExternalAppendOnlyMap 会返回一个Iterator,叫做ExternalIterator
,这个Iterator背后的数据源是所有spill文件以及当前currentMap里的数据。
我们进去 ExternalIterator 看看,唯一的一个占用内存的对象是这个优先队列:
private val mergeHeap = new mutable.PriorityQueue[StreamBuffer]
mergeHeap 里元素数量等于所有spill文件个数加一。StreamBuffer 的结构:
private class StreamBuffer(
val iterator: BufferedIterator[(K, C)],
val pairs: ArrayBuffer[(K, C)])
其中iterator 只是一个对象引用,pairs 应该保存的是iterator里的第一个元素(如果hash有冲突的话,则为多个)
所以mergeHeap 应该不占用什么内存。到这里我们看看应该占用多少内存。依然假设 CoreNum 为 C,则
C * 32k + C * mergeHeap + C * SizeTrackingAppendOnlyMap
所以这一段占用内存较大的依然是 SizeTrackingAppendOnlyMap ,一样的,他的值也符合如下公式
C * SizeTrackingAppendOnlyMap < ExecutorHeapMemeory * 0.2 * 0.8
ExternalAppendOnlyMap 的目的是做Combine,然后如果你还设置了Order,那么接着会启用 ExternalSorter 来完成排序。
经过上文对Shuffle Write的使用,相比大家也对ExternalSorter有一定的了解了,此时应该占用内存的地方最大不超过下面的这个值:
C * SizeTrackingAppendOnlyMap + C * PartitionedAppendOnlyMap
不过即使如此,因为他们共享一个shuffleMemoryManager,则理论上只有这么大:
C * SizeTrackingAppendOnlyMap < ExecutorHeapMemeory * 0.2 * 0.8
分析到这里,我们可以做个总结:
- Shuffle Read阶段如果内存不足,有两个阶段会落磁盘,分别是Combine 和 Sort 阶段。对应的都会spill小文件,并且产生读。
- Shuffle Read 阶段如果开启了spill功能,则基本能保证内存控制在
ExecutorHeapMemeory * 0.2 * 0.8
之内。
Spark Sort Based Shuffle内存分析的更多相关文章
-
Spark技术内幕:Sort Based Shuffle实现解析
在Spark 1.2.0中,Spark Core的一个重要的升级就是将默认的Hash Based Shuffle换成了Sort Based Shuffle,即spark.shuffle.manager ...
-
Spark-1.6.0中的Sort Based Shuffle源码解读
从Spark-1.2.0开始,Spark的Shuffle由Hash Based Shuffle升级成了Sort Based Shuffle.即Spark.shuffle.manager从Hash换成了 ...
-
Spark技术内幕: Shuffle详解(一)
通过上面一系列文章,我们知道在集群启动时,在Standalone模式下,Worker会向Master注册,使得Master可以感知进而管理整个集群:Master通过借助ZK,可以简单的实现HA:而应用 ...
-
Spark Tungsten揭秘 Day2 Tungsten-sort Based Shuffle
Spark Tungsten揭秘 Day2 Tungsten-sort Based Shuffle 今天在对钨丝计划思考的基础上,讲解下基于Tungsten的shuffle. 首先解释下概念,Tung ...
-
浅析 Spark Shuffle 内存使用
在使用 Spark 进行计算时,我们经常会碰到作业 (Job) Out Of Memory(OOM) 的情况,而且很大一部分情况是发生在 Shuffle 阶段.那么在 Spark Shuffle 中具 ...
-
Spark内核| 调度策略| SparkShuffle| 内存管理| 内存空间分配| 核心组件
1. 调度策略 TaskScheduler会先把DAGScheduler给过来的TaskSet封装成TaskSetManager扔到任务队列里,然后再从任务队列里按照一定的规则把它们取出来在Sched ...
-
Apache 流框架 Flink,Spark Streaming,Storm对比分析(一)
本文由 网易云发布. 1.Flink架构及特性分析 Flink是个相当早的项目,开始于2008年,但只在最近才得到注意.Flink是原生的流处理系统,提供high level的API.Flink也提 ...
-
spark性能调优(二) 彻底解密spark的Hash Shuffle
装载:http://www.cnblogs.com/jcchoiling/p/6431969.html 引言 Spark HashShuffle 是它以前的版本,现在1.6x 版本默应是 Sort-B ...
-
Spark SQL慕课网日志分析(1)--系列软件(单机)安装配置使用
来源: 慕课网 Spark SQL慕课网日志分析_大数据实战 目标: spark系列软件的伪分布式的安装.配置.编译 spark的使用 系统: mac 10.13.3 /ubuntu 16.06,两个 ...
随机推荐
-
MyEclipse设置像visual studio一样的智能提示
打开 Eclipse -> Window -> Perferences -> Java -> Editor -> Content Assist, 在右边最下面一栏找到 ...
-
《30天自制操作系统》19_day_学习笔记
harib16a: 这一部分,我们在系统中实现读取文件内容的命令type.在windows中,输入“type 文件名”,在Linux中,输入“cat 文件名”都可以显示文件的内容.我们先来看看如何读取 ...
-
SQL 分页
sql = "SELECT TOP 10000 * " + " FROM(SELECT ROW_NUMBER() OVER(ORDER BY DataArticleID) ...
-
《Linux内核分析》之第四章读书笔记
4.1多任务 多任务操作系统:同时并发地交互执行多个进程的操作系统 多任务操作系统会使多个进程处于堵塞或者睡眠状态.这些任务尽管位于内存,但是并不处于可运行状态.这些进程利用内核堵塞自己,直到某一事件 ...
-
javascript坐标:event.x、event.clientX、event.offsetX、event.screenX 用法
clientX 设置或获取鼠标指针位置相对于窗口客户区域的 x 坐标,其中客户区域不包括窗口自身的控件和滚动条. clientY 设置或获取鼠标指针位置相对于窗口客户区域的 y 坐标,其中客户区域不包 ...
-
20160808_卸载OpenJDK
1.查看信息 [root@localhost ~]# rpm -qa | grep jdkjava-1.6.0-openjdk-devel-1.6.0.0-1.50.1.11.5.el6_3.x86_ ...
-
bzoj1433: [ZJOI2009]假期的宿舍
1433: [ZJOI2009]假期的宿舍 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 2286 Solved: 969[Submit][Stat ...
-
SQL insert into select 语句
遇到权限数据变更的需要批量到别的平台, 在175平台添加一个权限需要, 批量到别的现有平台, 以后的建站, 会把sql放到自动建站里面; 权限的 insert into select 表一: `ous ...
-
LeetCode算法题-Range Addition II(Java实现)
这是悦乐书的第271次更新,第285篇原创 01 看题和准备 今天介绍的是LeetCode算法题中Easy级别的第138题(顺位题号是598).给定一个m行n列的新二维数组M,其初始值为0.提供一个二 ...
-
Codeforces 769D k-Интересные пары чисел
题目链接:http://codeforces.com/contest/769/problem/D 搜索题 考虑这些数的值域较小,直接${O(2^{k})}$次方枚举每个数字二进制位上是否改变,剪枝一下 ...