LeetCode:152_Maximum Product Subarray | 最大乘积连续子数组 | Medium

时间:2023-03-08 18:37:27

题目:Maximum Product Subarray

Find the contiguous subarray within an array (containing at least one number) which has the largest product. 

For example, given the array [,,-,],
the contiguous subarray [,] has the largest product = .

这道题属于动态规划的题型,之前常见的是Maximum SubArray,现在是Product Subarray,不过思想是一致的。
当然不用动态规划,常规方法也是可以做的,但是时间复杂度过高(TimeOut),像下面这种形式:

 // 思路:用两个指针来指向字数组的头尾
int maxProduct(int A[], int n)
{
assert(n > );
int subArrayProduct = -; for (int i = ; i != n; ++ i) {
int nTempProduct = ;
for (int j = i; j != n; ++ j) {
if (j == i)
nTempProduct = A[i];
else
nTempProduct *= A[j];
if (nTempProduct >= subArrayProduct)
subArrayProduct = nTempProduct;
}
}
return subArrayProduct;
}

用动态规划的方法,就是要找到其转移方程式,也叫动态规划的递推式,动态规划的解法无非是维护两个变量,局部最优和全局最优,我们先来看Maximum SubArray的情况,如果遇到负数,相加之后的值肯定比原值小,但可能比当前值大,也可能小,所以,对于相加的情况,只要能够处理局部最大和全局最大之间的关系即可,对此,写出转移方程式如下:
local[i + 1] = Max(local[i] + A[i], A[i]);

global[i + 1] = Max(local[i + 1], global[i]);

对应代码如下:

 int maxSubArray(int A[], int n)
{
assert(n > );
if (n <= )
return ;
int global = A[];
int local = A[]; for(int i = ; i != n; ++ i) {
local = MAX(A[i], local + A[i]);
global = MAX(local, global);
}
return global;
}

而对于Product Subarray,要考虑到一种特殊情况,即负数和负数相乘:如果前面得到一个较小的负数,和后面一个较大的负数相乘,得到的反而是一个较大的数,如{2,-3,-7},所以,我们在处理乘法的时候,除了需要维护一个局部最大值,同时还要维护一个局部最小值,由此,可以写出如下的转移方程式:

max_copy[i] = max_local[i]
max_local[i + 1] = Max(Max(max_local[i] * A[i], A[i]),  min_local * A[i])

min_local[i + 1] = Min(Min(max_copy[i] * A[i], A[i]),  min_local * A[i])

对应代码如下:

 #define MAX(x,y) ((x)>(y)?(x):(y))
#define MIN(x,y) ((x)<(y)?(x):(y)) int maxProduct1(int A[], int n)
{
assert(n > );
if (n <= )
return ; if (n == )
return A[];
int max_local = A[];
int min_local = A[]; int global = A[];
for (int i = ; i != n; ++ i) {
int max_copy = max_local;
max_local = MAX(MAX(A[i] * max_local, A[i]), A[i] * min_local);
min_local = MIN(MIN(A[i] * max_copy, A[i]), A[i] * min_local);
global = MAX(global, max_local);
}
return global;
}

总结:动态规划题最核心的步骤就是要写出其状态转移方程,但是如何写出正确的方程式,需要我们不断的实践并总结才能达到。