神仙题鸭!orz dkw
暴力就是完全背包
而完全背包可以和生成函数扯上关系,记第i种物品质量为\(a_i\),那么这种物品的生成函数\(G(i)=\sum_{j=0}^{\infty}x^{a_ij}\),最后体积为i的答案即为这n个生成函数的卷积的第i项系数
然而用卷积复杂度为\(O(mnlogm)\),还不如暴力.说道卷积,我就想起了可以把多项式先求\(ln\),然后加起来,最后求\(exp\).只不过每个函数求\(ln\)复杂度还是不行,我们打表发现\(lnG(i)=\sum_{j=0}^{\infty}\frac{1}{j}x^{a_ij}\),所以直接把对应项的系数通过枚举倍数加好救星了,复杂度\(O(\sum_{i=1}^{m}\lfloor\frac{m}{i}\rfloor) \approx O(nlogn)\)
#include<bits/stdc++.h>
#define LL long long
#define db double
#define il inline
#define re register
using namespace std;
const int N=270000+10,mod=998244353;
il int rd()
{
int x=0,w=1;char ch=0;
while(ch<'0'||ch>'9') {if(ch=='-') w=-1;ch=getchar();}
while(ch>='0'&&ch<='9') {x=(x<<3)+(x<<1)+(ch^48);ch=getchar();}
return x*w;
}
il int fpow(int a,int b){int an=1;while(b){if(b&1) an=1ll*an*a%mod;a=1ll*a*a%mod,b>>=1;} return an;}
int rdr[N];
il void ntt(int *a,int n,bool op)
{
int l=0,x,y;
while((1<<l)<n) ++l;
for(int i=0;i<n;++i) rdr[i]=(rdr[i>>1]>>1)|((i&1)<<(l-1));
for(int i=0;i<n;++i) if(i<rdr[i]) swap(a[i],a[rdr[i]]);
for(int i=1;i<n;i<<=1)
{
int ww=fpow(op?3:332748118,(mod-1)/(i<<1));
for(int j=0;j<n;j+=i<<1)
for(int k=0,w=1;k<i;++k,w=1ll*w*ww%mod)
x=a[j+k],y=1ll*a[j+k+i]*w%mod,a[j+k]=(x+y)%mod,a[j+k+i]=(x-y+mod)%mod;
}
if(!op) for(int i=0,w=fpow(n,mod-2);i<n;++i) a[i]=1ll*a[i]*w%mod;
}
int p1[N],p2[N],p3[N],p4[N],p5[N],p6[N],inv[N];
il void polyder(int *a,int *b,int n)
{
for(int i=0;i<n-1;++i) b[i]=1ll*a[i+1]*(i+1)%mod;
b[n-1]=b[n]=0;
}
il void polying(int *a,int *b,int n)
{
for(int i=1;i<n;++i) b[i]=1ll*a[i-1]*inv[i]%mod;
b[0]=0;
}
il void polyinv(int *a,int *b,int n)
{
if(n==1){b[0]=fpow(a[0],mod-2);return;}
polyinv(a,b,n>>1);
for(int i=0;i<n;++i) p1[i]=a[i],p2[i]=b[i];
ntt(p1,n<<1,1),ntt(p2,n<<1,1);
for(int i=0;i<(n<<1);++i) p1[i]=1ll*p1[i]*p2[i]%mod*p2[i]%mod;
ntt(p1,n<<1,0);
for(int i=0;i<n;++i) b[i]=((b[i]+b[i])%mod-p1[i]+mod)%mod;
for(int i=0;i<(n<<1);++i) p1[i]=p2[i]=0;
}
il void polyln(int *a,int *b,int n)
{
polyder(a,p3,n),polyinv(a,p4,n);
ntt(p3,n<<1,1),ntt(p4,n<<1,1);
for(int i=0;i<(n<<1);++i) p3[i]=1ll*p3[i]*p4[i]%mod;
ntt(p3,n<<1,0);
polying(p3,b,n);
for(int i=0;i<(n<<1);++i) p3[i]=p4[i]=0;
}
il void polyexp(int *a,int *b,int n)
{
if(n==1){b[0]=1;return;}
polyexp(a,b,n>>1);
polyln(b,p5,n);
for(int i=0;i<n;++i) p5[i]=(mod-p5[i]+a[i])%mod,p6[i]=b[i];
p5[0]=(p5[0]+1)%mod;
ntt(p5,n<<1,1),ntt(p6,n<<1,1);
for(int i=0;i<(n<<1);++i) p5[i]=1ll*p5[i]*p6[i]%mod;
ntt(p5,n<<1,0);
for(int i=0;i<n;++i) b[i]=p5[i];
for(int i=0;i<(n<<1);++i) p5[i]=p6[i]=0;
}
int a[N],b[N],cn[N],n,m;
int main()
{
n=rd(),m=rd();
inv[0]=inv[1]=1;
for(int i=2;i<=m;++i) inv[i]=(mod-1ll*mod/i*inv[mod%i]%mod)%mod;
for(int i=1;i<=n;++i) ++cn[rd()];
for(int i=1;i<=m;++i)
{
if(!cn[i]) continue;
for(int j=1;i*j<=m;++j)
a[i*j]=(a[i*j]+1ll*cn[i]*inv[j]%mod)%mod;
}
int l=1;
while(l<m+1) l<<=1;
polyexp(a,b,l);
for(int i=1;i<=m;++i) printf("%d\n",b[i]);
return 0;
}
luogu P4389 付公主的背包的更多相关文章
-
洛谷 P4389 付公主的背包 解题报告
P4389 付公主的背包 题目背景 付公主有一个可爱的背包qwq 题目描述 这个背包最多可以装\(10^5\)大小的东西 付公主有\(n\)种商品,她要准备出摊了 每种商品体积为\(V_i\),都有\ ...
-
洛谷 P4389: 付公主的背包
题目传送门:洛谷 P4389. 题意简述: 有 \(n\) 个物品,每个物品都有无限多,第 \(i\) 个物品的体积为 \(v_i\)(\(v_i\le m\)). 问用这些物品恰好装满容量为 \(i ...
-
洛谷P4389 付公主的背包--生成函数+多项式
题目链接戳这里 题目描述 有\(n\)件不同的商品,每件物品都有无限个,输出总体积为\([1,m]\)的方案数 思路 直接跑背包有\(30\) 考虑把每个物品的生成函数设出来,对于一件体积为\(v\) ...
-
[luogu 4389] 付公主的背包
题意:求一个较大的多重背包对于每个i的方案数,答案对998244353取模. 思路: 生成函数: 对于一个\(V\) 设: \(f(x) = \sum_{i=0}^{oo} x ^ {V * i} = ...
-
P4389 付公主的背包
注意 初始化的时候要这样写 for(int i=1,x;i<=n;i++){ scanf("%d",&x); v[x]++; } for(int i=1;i<= ...
-
洛谷P4389 付公主的背包 [生成函数,NTT]
传送门 同样是回过头来发现不会做了,要加深一下记忆. 思路 只要听说过生成函数的人相信第一眼都可以想到生成函数. 所以我们要求 \[ ans=\prod \sum_n x^{nV}=\prod \fr ...
-
[洛谷P4389]付公主的背包
题目大意:有$n(n\leqslant10^5)$种物品,第$i$个物品体积为$v_i$,都有$10^5$件.给定$m(m\leqslant10^5)$,对于$s\in [1,m]$,请你回答用这些商 ...
-
LuoguP4389 付公主的背包【生成函数+多项式exp】
题目背景 付公主有一个可爱的背包qwq 题目描述 这个背包最多可以装10^5105大小的东西 付公主有n种商品,她要准备出摊了 每种商品体积为Vi,都有10^5105件 给定m,对于s\in [1,m ...
-
luoguP4389 付公主的背包
luogu 显然这是个背包题 显然物品的数量是不用管的 所以考虑大小为\(v\)的物品可以装的体积用生成函数表示一下 \[ f(x)=\sum_{i=0}^{+\infty}x^{vi}=\frac{ ...
随机推荐
-
spring源码分析之@ImportSelector、@Import、ImportResource工作原理分析
1. @importSelector定义: /** * Interface to be implemented by types that determine which @{@link Config ...
-
翻译-使用Ratpack和Spring Boot打造高性能的JVM微服务应用
这是我为InfoQ翻译的文章,原文地址:Build High Performance JVM Microservices with Ratpack & Spring Boot,InfoQ上的中 ...
-
Asp.Net实现无刷新文件上传并显示进度条(非服务器控件实现)(转)
Asp.Net实现无刷新文件上传并显示进度条(非服务器控件实现) 相信通过Asp.Net的服务器控件上传文件在简单不过了,通过AjaxToolkit控件实现上传进度也不是什么难事,为什么还要自己辛辛苦 ...
-
SharePoint自动化系列——Select-option标签的定位方法总结
转载请注明出自天外归云的博客园:http://www.cnblogs.com/LanTianYou/ C#中通过Selenium定位页面上的select-option结构,尝试了以下几种方法,均没有生 ...
-
46. Permutations——本质和树DFS遍历无异 fun: for i in nums fun(i)
Given a collection of distinct numbers, return all possible permutations. For example, [1,2,3] have ...
-
类库探源——System.Drawing.Bitmap
一.System.Drawing.Bitmap Bitmap 类: 封装GDI+ 位图,此位图由图形图像及其属性的像素数据组成.Bitmap 是用于处理由像素定义的图像的对象 命名空间: System ...
-
json介绍及简单示例
JSON的定义: 一种轻量级的数据交换格式,具有良好的可读和便于快速编写的特性.业内主流技术为其提供了完整的解决方案(有点类似于正则表达式 ,获得了当今大部分语言的支持),从而可以在不同平台间进行数据 ...
-
loadrunner 参数化取值方式详解
参数化对话框中与参数取值方式有关的区域如下: 改变参数化的取值方式,关键在于Select next row和Update value on这两个选项. Select next row包括以下选项: S ...
-
VS在.NETFramework升级时遇到类库冲突如何解决
相信大家在开发环境中随着程序的不断升级,很多时间需要升级. NETFramework版本.今天项目中遇到的问题是从. NETFramework4.0升级到4.5时提示 Entityframework. ...
-
Android开发笔记——ListView模块、缓存及性能
ListView是Android开发中最常用的组件之一.本文将重点说明如何正确使用ListView,以及使用过程中可能遇到的问题. ListView开发模块 图片缓存 可能遇到的问题 一.ListVi ...