传送门
这题让我联想到一道叫做方格取数问题的题,如果想使摆的更多,就要使不能摆的更少,因此根据骑士的限制条件建图,求出至少有多少骑士不能摆,减一减就行了。
代码:
#include<bits/stdc++.h>
using namespace std;
int n,m,tot=0,d[500005],dx[8]={1,1,-1,-1,2,2,-2,-2},dy[8]={2,-2,2,-2,1,-1,1,-1},s,t,cnt=-1,first[500005],tim[205][205];
bool f[205][205];
struct Node{int v,next,c;}e[500005];
inline void add(int u,int v,int c){e[++cnt].v=v,e[cnt].next=first[u],e[cnt].c=c;first[u]=cnt;}
inline bool bfs(){
queue<int>q;
memset(d,-1,sizeof(d));
q.push(s),d[s]=0;
while(!q.empty()){
int x=q.front();
q.pop();
for(int i=first[x];~i;i=e[i].next){
int v=e[i].v;
if(e[i].c<=0||d[v]!=-1)continue;
d[v]=d[x]+1;
if(v==t)return true;
q.push(v);
}
}
return false;
}
inline int dfs(int x,int f){
if(!f||x==t)return f;
int flow=f;
for(int i=first[x];~i;i=e[i].next){
int v=e[i].v;
if(d[v]!=d[x]+1||e[i].c<=0||!flow)continue;
int tmp=dfs(v,min(flow,e[i].c));
if(!tmp)d[v]=-1;
e[i].c-=tmp;
e[i^1].c+=tmp;
flow-=tmp;
}
return f-flow;
}
int main(){
memset(f,false,sizeof(f));
memset(first,-1,sizeof(first));
scanf("%d%d",&n,&m),s=0,t=n*n+1;
for(int i=1;i<=m;++i){
int x,y;
scanf("%d%d",&x,&y);
f[x][y]=true;
}
for(int i=1;i<=n;++i)
for(int j=1;j<=n;++j)
tim[i][j]=++tot;
for(int i=1;i<=n;++i)
for(int j=1;j<=n;++j){
if(f[i][j])continue;
if((i+j)&1){
add(s,tim[i][j],1),add(tim[i][j],s,0);
for(int k=0;k<8;++k){
int mx=dx[k]+i,my=dy[k]+j;
if(f[mx][my])continue;
if(mx>=1&&my>=1&&mx<=n&&my<=n)
add(tim[i][j],tim[mx][my],0x3f3f3f3f),add(tim[mx][my],tim[i][j],0);
}
}
else add(tim[i][j],t,1),add(t,tim[i][j],0);
}
int ans=0;
while(bfs())ans+=dfs(s,0x3f3f3f3f);
printf("%d",n*n-ans-m);
return 0;
}