题目描述
在一个 n*n个方格的国际象棋棋盘上,马(骑士)可以攻击的棋盘方格如图所示。棋盘上某些方格设置了障碍,骑士不得进入
对于给定的 n*n 个方格的国际象棋棋盘和障碍标志,计算棋盘上最多可以放置多少个骑士,使得它们彼此互不攻击
输入输出格式
输入格式:
第一行有 2 个正整数n 和 m (1<=n<=200, 0<=m<n2),分别表示棋盘的大小和障碍数。接下来的 m 行给出障碍的位置。每行 2 个正整数,表示障碍的方格坐标。
输出格式:
将计算出的共存骑士数输出
输入输出样例
最大流与最小割之间的转换
最多放多少骑士==最少拿走多少
观察图片不难发现:黄色的不能攻击黄色的,红色同理
那么不难想到二分图匹配
这样就转化成了二分图最小定点覆盖
而二分图最小顶点覆盖==二分图最大匹配。证明可以看[这里](http://www.cnblogs.com/jianglangcaijin/p/6035945.html)
从S向红色连边(权重为1),从红色向能攻击到的黄色连边(权重为INF),从黄色向T连边(权重为1)
// luogu-judger-enable-o2
#include<cstdio>
#include<cstring>
#include<queue>
#define AddEdge(x,y,z) add_edge(x,y,z),add_edge(y,x,0);
using namespace std;
const int MAXN=,INF=1e8+;
inline char nc()
{
static char buf[MAXN],*p1=buf,*p2=buf;
return p1==p2&&(p2=(p1=buf)+fread(buf,,MAXN,stdin),p1==p2)?EOF:*p1++;
}
inline int read()
{
char c=nc();int x=,f=;
while(c<''||c>''){if(c=='-')f=-;c=nc();}
while(c>=''&&c<=''){x=x*+c-'';c=nc();}
return x*f;
}
int N,M,S,T;
struct node
{
int u,v,flow,nxt;
}edge[MAXN*];
int head[MAXN],cur[MAXN],num=;
inline void add_edge(int x,int y,int z)
{
edge[num].u=x;
edge[num].v=y;
edge[num].flow=z;
edge[num].nxt=head[x];
head[x]=num++;
}
int deep[MAXN];
inline bool BFS()
{
memset(deep,,sizeof(deep));
deep[S]=;
queue<int>q;
q.push(S);
while(q.size()!=)
{
int p=q.front();
q.pop();
for(int i=head[p];i!=-;i=edge[i].nxt)
if(!deep[edge[i].v]&&edge[i].flow)
{
deep[edge[i].v]=deep[p]+;q.push(edge[i].v);
if(edge[i].v==T) return ;
}
}
return deep[T];
}
int DFS(int now,int nowflow)
{
if(now==T||nowflow<=) return nowflow;
int totflow=;
for(int &i=cur[now];i!=-;i=edge[i].nxt)
{
if(deep[edge[i].v]==deep[now]+&&edge[i].flow)
{
int canflow=DFS(edge[i].v,min(nowflow,edge[i].flow));
edge[i].flow-=canflow;edge[i^].flow+=canflow;
totflow+=canflow;
nowflow-=canflow;
if(nowflow<=) break;
}
}
return totflow;
}
int Dinic()
{
int ans=;
while(BFS())
{
memcpy(cur,head,sizeof(head));
ans+=DFS(S,INF);
}
return ans;
}
int a[][],c[][];
int xx[]={,-,-,-,-,+,+,+,+};
int yy[]={,-,-,+,+,+,+,-,-};
int main()
{
#ifdef WIN32
freopen("a.in","r",stdin);
#else
#endif
memset(head,-,sizeof(head));
N=read();M=read();S=;T=N*N+;
for(int i=;i<=M;i++)
{
int x=read(),y=read();
c[x][y]=;
}
for(int i=;i<=N;i++)
for(int j=;j<=N;j++)
a[i][j]=(i-)*N+j;
for(int i=;i<=N;i++)
for(int j=;j<=N;j++)
{
if(c[i][j]) continue;
if((i+j)%)
{
AddEdge(S,a[i][j],);
for(int k=;k<=;k++)
{
int wx=i+xx[k],wy=j+yy[k];
if(wx>=&&wx<=N&&wy>=&&wy<=N)
AddEdge(a[i][j],a[wx][wy],INF);
}
}
else AddEdge(a[i][j],T,);
}
printf("%d",N*N-M-Dinic()); return ;
}