设 $f:\bbR^{n\times n}\to\bbR$ 适合 $$\bex f(cA+B)=cf(A)+f(B),\quad f(AB)=f(BA),\quad\forall\ c\in\bbR,\ A,B\in \bbR^{n\times n}. \eex$$ 试证: $\exists\ \lm\in\bbR,\st f=\lm \cdot\tr$.
相关文章
- Mathematics:X-factor Chains(POJ 3421)
- 【机器学习|数学基础】Mathematics for Machine Learning系列之线性代数(25):线性变换
- [Everyday Mathematics]20150101
- [Everyday Mathematics]20150205
- [Everyday Mathematics]20150201
- [Everyday Mathematics]20150131
- [Everyday Mathematics]20150122
- [Everyday Mathematics]20150224
- [Everyday Mathematics]20150228
- [Everyday Mathematics]20150226