fastjson 的简单说明及使用

时间:2025-01-03 17:06:32

fastjson 是一个性能很好的 Java 语言实现的 JSON 解析器和生成器,来自阿里巴巴的工程师开发。

各个版本jar包下载地址:https://repo1.maven.org/maven2/com/alibaba/fastjson/

源码下载地址:https://github.com/alibaba/fastjson

主要特点:

  • 快速FAST (比其它任何基于Java的解析器和生成器更快,包括jackson

  • 强大(支持普通JDK类包括任意Java Bean Class、Collection、Map、Date或enum)

  • 零依赖(没有依赖其它任何类库除了JDK)

使用说明:fastjson的最主要的使用入口是com.alibaba.fastjson.JSON,具体见下面代码:

package com.test;

import java.util.HashMap;
import java.util.Map; import com.alibaba.fastjson.JSON;
import com.test.entity.User; public class FashJsonTest { public static void main(String[] args) {
//实体类 -->> json字符串
User user = new User("张三", "男", 26);
String userJson = JSON.toJSONString(user);
System.out.println(userJson);
//json字符串 -->> 实体类
User newUser = JSON.parseObject(userJson,User.class);
System.out.println(newUser.getName()); //Map -->> json字符串
Map <String,String> map = new HashMap<String,String>();
map.put("date", "2015-07-24");
System.out.println(JSON.toJSONString(map));
//Map -->> json字符串
Map <String,Object> objMap = new HashMap<String,Object>();
objMap.put("curUser", user);
System.out.println(JSON.toJSONString(objMap));
}
}

运行结果:

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAuwAAACACAIAAADf66ujAAAToElEQVR4nO2d2aGrOgxFqYuCqIcSXhU0QzF5Hwkg2ZIHMAk+d62vDOBBFtZGZhheAAAAAB0y/LoBAAAAAGdAxAAAAECXIGIAAACgSxAxAAAA0CWIGAAAAOgSRAwAAAB0CSIGAAAAugQRAwAAAF2CiAEAAIAuQcQAAABAl/xOxKzzOIzzemcVy3R3Dd+v6V9lmYZpeV1zmy+43N/jMNo2BP8antscB/06jx2Zxmlt1dHBofQIkofkOo//xhAhYiTrPA4HFfv6NTWSN8s0hLSYNT/F7kXdJcbWebzY4J+JmI+J3P3EyKgOxqZU3vXUmBcdAu1ETCrUi2pDK4qfhU0dT23gwFERV0TMMqXGWvfO+c/vT5HRbD+sFDHFNnk2R89t0zk2jwZRzcaWGfRR5I+iN4LbXzkTpw7JIg1j+GfK8dyOp/x838mop0nkKRcxTzjbqGzDKRFzqo+3ixhR3IkGuv0Ki7tJxKzzOI7X3Od0BG3ht55ZgkN3meRW0SQifnhuDEiY65qISc2py7SbUVrGMPtRil1eCwcuPYPNiJh3FJqmhL5xqxFWELYJ9993l/VbeiMWILUD+RfO6o8+mKYzbW4PYp2XJWZfcwS3to75OSJxSBqnvVp8mF3LOJ7V8bSfr/P4+Tk4yK2qT7oYIuZC+SU1IWI297wWAx8oYtzwctSs9lLfn7oAeZeISe4sjbF/dia1vSDz/yZmLZxOi5aTvL+SdaidShx4L80q1vDD+oHsX8U4Hrh1LGXz0GJVXlZmbmXffcI8LWL03KTPrhKtyzme36SCXoY7R7ucnWCSIuZYBBCyTug0nVV6t2mZPj8t0zDOyydd9skFh0Lw3eRlGsZ51v9utYs8VEkb9Gbyj6JzX2skrIxf9JvqgufvVkmytTq1Fhvk81fsV1ZfjzJju/nFST8Lm6sseHxJZEQPa43zGjix8Ba1r/e7XE4yrCfPLlyfcfbNW948dr0DWpvGO9XY9g6OGq9h8vdxnoPwKXY3hiN3JEatV+OojlPf8hlHUBmUfYN9qt1sJnxsnUdxSIUTvNnUVysHTszs5vQitniX5uwc2MPo3V6JXuQoDWZ2sWZIjg6xzITs2+SsnfXioPAJwxyqR6YLOeFAW9zOpm5ThWtzQ8T4rh6XX6iIhT3j+dLdS2NL2WIRYxohyM7YHY/dwxjFTEbwrFA2Rczmbq5uCqeK3XfD8Pze6t31Iz8XRCORlJcuP4lzs3Bnrw1KgC6T0YWk54njbNhiTNwMW6HGXdDNdPZSYS1lkH0j75Rgq8Co6EQmxuq4ceppDlNUx3EIBBFGDKbosPV7LGKi4c36jLdv1vInRUxgX3GMhlO747O6YSpoKNUm1LVhgdyRGLVeHQKGiCn0usBYaqrcT3OiUxY59HLgZKomVLaqniYOLEvWbmMN1bZF7JKeXdzeGftkg5k6wryFOR1hjEMsMyF7NjlvZ1nhOI67h0anbfE8H7uQvZkuxx4Hc3pOi5iX/KN0bFKIraI+ZvbLqqhXuYixjWB1MuOz8u/tyI4aGlu1sDshkYiRKter0tZ/CTewPtuDtQZZNa37cm0Ihj0VZnJ9DDcPTiECied2IZxgTH0T1u6XFktlYyDi5p0QMV7HjaFOnoJ7fmCeHSZ+j0SMM7gpn3H3zVm+SsSEG6kpQg1UbAevYa5jO4rVHLXU59gU8Q/inLXI63Qhwamh2jjwC+M8VG9hCRqrTxcceFFnxqbbBKMwmSLeFzGJmSA6yhOOFgoru1hbgKiv+QnZssn+7YSdD+8e5/UdaKOTcdvZXqELuZuJuiMjhqarFzFiw70FiYnX3CY6QRHy8pyIiYwRoWOsmn9KHS/4M3MS8zIUfrzLyVRMMhOjqtACwqirqYgJzzYtEZONK1ZIiPqV6ILXDFlafP4Q6bC4RGuaFjvWiJikxJb51xIRoy1tdPxd4arXBvx4+rIOKDMP0ELEZH0mJWKSlrftXKpirOgbd9AscrUzy56IsS1wg4gp8rrADLLUKALFodc7F9BFuVPpZQc2bJwchcG+ENM59Nzexd9T4WGZoknaKTZ//lBwVmnY5JKd18+1H/t4L9Eh4jpbyoUcU4Xna6FLujYvETEW+cgeNEOe50S6uqBT7mbJA9Y5nNKtrxYxBbsUdiek8JqYoMpAwpph6ZqICY45I/KZbQhFrT7jzYacyKxmM9Z5Tp2jycNe1GrvNVgzRLGIMY1gVFQoYkRrbfu/mzNNVnRXm9kNlN8j35LBx/g9EjGq6GWe17zP6H0rLO/MVNrDtrki8DQ1kWeDXKJhpmO7c5A2XVMRU+p1ElXXHuGExpatOkZa9NIPwXrabebAe8m2y1mjYBwDscqM+rx/1P8mzxhDqxk/pvzQOsQKRIxhk2t2XsVti+/PUePNeT5yIWczQdAp23SOzaODVAYhP6rklFUmJp3OxBibFYoY0whyLNyOO36+7jcnxb1NTDV1VDwn5qMSj44FSrGpiBEVyFuxcm2QZ/7y+seKLsZzUNyMoxLD6z9d+GwTBCi/uU5SOC1ibCPEFSm7CVRcUg2zOx7N095moiWR2D7O+6bYIt7vsYiRlQsBlPAZNbw1lk9MJ3Ex4cEqXbrkTN1smOpcdGGvtdFhgeYiptTrgl5F+lEHUGNv54gJ22cebtcdeBsvaRJ7eom3mBbVp61pkVxTvQu1mm/Nl3aTj3+nx0ELkPgQKxExhk2u2TlQNKr7sSlSLmSHA22waPrWpjNsbg2iLCERXzISJTGCx/93ihina7ERZEeMjmf83BoW36pnNAyvHfi3Oes21/FU91k1fisF00mC9l261p7fYEq4FqXc5zGfkh/pkido0o+ObdLGA39MqHxijGFJZGKew/nhQcT808Tpom/RjYj5mOjSLHBdK4q0bCaH/VyuD60j3u6T4ss0THPujPorhMHrVIebGOo5NqnmcZMLbFw5L0PEwE/oRsQ8BZGC7TB89MnvNP5zwSbwMBAxAAAA0CVKxPwHAAAA0AlkYgAAAKBLEDEAAADQJYgYAAAA6BJEzB9kGBhWl9xjFjAdAEA3MGV3TxyAg0gsvxLCE8aJvwIAwJNJT9n2s7yn5bYHbt1dfu/1Jrc3Rcz5qNy0bQ1o1J4KEePVyKMyAACeQSrCGQ/Re1qgUu8yMV7oVfpwsD8qYi7lFf6uiCnNRSVrjF8LBQAAXyYR5Kx3Gci3U94VqCrKPx6jHWwfvH2sdb3NqK3X2t5bTrq6MtKibS1p1J7KTIxfY48vMAIA+FtUihgf8W6P4E2w6jTXeOdtaSXrPCY2Dt8P2yK+vB+Bb7+x1Ojv9lKRYdj3OnZp3d+DWKw87MIO5QPSOQyb6E4vU+GqTamtXg2viUHEAAD8mjYixns9nUi5Ry+hl6+uL8qZpANVUOQ4z9Wqwa5RvlJcvJzc6O8WcpfpvZd6t33r/h4MZdftlne7Ld7LkFybnMno1ImYNGXd+iMvxQUA6JrElH32lafHGaqKX+KLPodt8co/fdGCPoE/f/GCbpl35r3/vn3YdtuDcPv+ShKZGDMkf1noOCt7KZus8ziM03T/wt6lLn955REAACLMSfydgagJtMGqUToTEy4xXUmW7OXJEgK5cTrv74sYs7+eiGnd34BYhaRFzPc5DKAkbcImFZmVK1y2z5Z0a9McAACoI52JqUjmqzyIFDE7+ZzGGaxwF+RemosYp7+FmZjbMLXLQ3TM6/XSSZmUTY5rkVrf/pPIQgVCME/rjBoAANTS5JqY8PKGLTy5C1Kn4pMnV4xGyp+jrP9bWZVeLmqJGKe/rohp198kXxQx5TZUSIO6Njn+KDfbmcyNaZkKc3FhLwDAr2l0d5K8z2Q59nPvTQr+OXmhq0r0uMsV1r2xZRHPX04y++uLmEb9zTA4t1jfoWOqbHig9rBsEtyPVHp70nlbFf5ugIgBAPg1zW6xtgsIr015RP699iEyvSBVy3D6zuEyurZhwhqIGACAjqh8Ym8VwVrPE+7mWLfHuPy0Fc0JVEsizVBCprKebZjoYFHfBVwSAwDwc5Kz9pbvPz1XJ9YSAHrls5iIPwMA/Jjn3LoCAAAAUAEiBgAAALoEEQMAAABdUiRi7rhHFwAAAOAKmXfr7L8EG5gbn7nVBQAAAOAUKZFhihh0CQAAADyBOhGDggEAAICHULGchIIBAACA51D0DjzkCwAAADyNjIjhil0AAAB4JnWZGFO7IHQAAADg+9TdYo0uAQAAgIfALdYAAADQJYgYAAAA6JIKEcOiEgAAADyHUhETCBd0DAAAAPwWW4sEqsWTLIn7krhHCQAAAG4FhQEAAABdgogBAACALkHEAAAAQJcgYgAAAKBLEDEAAADQJYgYAAAA6JK0iFmmYRiGYVq2H9Z5fH9dpmEY59XZyfnnPCX1Xtn+r+LZIRpYAACA7kiJGEONtBMxdVKnmYj5RO8hKsX9412WjvfvnwZvDwuj/KCUooL8Zu4Fyj+SdlsmZAwAAHRMQsSs8xgFynUe37Fw/xBzl4jJ1Vuw/TJtUTv6ffu2h33xxxxGe8s0Kdzyg21yksJr//7TNE2RiPHtdkfODAAA4FtUihifI0UwWAsXYvEiTkDI4J1MNXjtPLFkJKO6DubHP+s8TsvL0BeVIsYr39+mrv3ie1UxiBgAAOiZNiJGRXkRGjcVsG2jxY0Zyfdyihc7zokYUbysaVNYquaLIiZb/ieLUrWyo9u0S5oqXVKbUAIAAHgSCRFzrF3k0JHTi6P5reKMxV2XbChF9a72Iy8+n7IipuJClmz59SkRVxHWihhSMQAA0C2miDEuZU0RBGUZR/0rYL2rhmuvdD1BmLr5rGCpRqdFzCv40+6vzCmlyneub7EW27z2B4KszA5H41AyAADQIelMTFlw00FZhOTo6tmqTMw9GItPwbW2saZIr2xl170y5dfdJBS3X12N5AkftyxuTwIAgF5pck2MCMvviCq+qHRE7vLWUzf91lwT49yhLX822pBqlnu3UWH5dUs62TvMubAXAAD+GRrdnbQvfwQ3yMh7jZagPLFkEjxNrz6fUBaM45zFXoHZmHiH9391l8Qkyi+TQCXtF5sgYgAA4N+g2S3W0B+IGAAA6JnKJ/bCH4JLYgAAoGuS705yHmoC3RPeMAUAANAfvMUaAAAAugQRAwAAAF2CiAEAAIAuQcTAn2UYcG8X4wmJml83EAAgD1MV/BHiABxEYvmVEJ4wTvwVAOCZpKeqz00swbPopqXg0bHP5GT7v26HX9m5l3qT25si5nxUbtq2BjRqT4WI8WqMDovM7wAAral8TsytE3T43JIbnlNzqv3ftsOZ8uWjkYOtj4cF5wv6oyLmUl7h74qY0lxUskbvnRynXiECAFBH5RN79zf91L3yp4wviZja9n/dDvXlL9NmuGD7utca3N+vVvVa23vLSVdXRlq0rSWN2lOZifFr9A5TnpUJAPfT7rUD4sU+225alYhJ7V20fOFSvLmeBdXrioKN4jyDXX4G7x1MdXYQZohekjQYXUikUCrbefwrX13VIo68B2ZvqfcObfGuz2l+93fbS73LvGl/D2KxclW+NKbGh3Wnl2ko06IVL0OtEDFpEDEA8DsaiRg7s50SMceUrc7zbBHjPSA/fE329tkuP0MDEbPOo1InxpurQ5Fhtv9UO80ix3muVg12jdZY2P3dQu724vJjjxv6ezCUXbdb3u221Prw2axhhYhJU9Yt//jg3WsAcD+JqepYo8jinHQlRYw6OS8QMUZjdLVid7v8k1TYwWmd6pj44rb/SlvDrIdSGefKd8cxrHsXMWo899Fo319JIhNjhuQvC51aH/58G6fp/oW9S132NNaXVyQB4J/EnLzeZ97lAcYLR0kRE++QvCbmyMUrORCQydxUUmuHqEnpTIzf/gvNlSUEcuO0mPNFjNlfT8S07m9ArELSIub7VPnw8ff9SuCyfbakW+nvAABtSGdiKpLY1ZmYShEjN7IzGYmSLnHWDmI/ceHIUJDTOIMV7oLcS3MR4/S3MBNzG6Z2eYiOeb1ehT78ktcitb7NJxROFqVllZ3CAADcQZtrYrybYI75V11W4c1vajGkRBl58/up+fP6NTHh5Q1bae6C1Kn45MkV50TYXsLbWlh8uaglYpz+uiKmXX+TfFHElNtQUeLD4o9ys53J3JiWqTAXF/YCwO9odneSzIvbi0CiPF9kGPc4hTl31Sj9l7yw9wciRt9nsuj+DkY7vfZXtlMlenRBovyoE8W5fn85yeyvL2Ia9TfD4NxifYeOqbJhhQ8H9yOV3p503laFvxsgYgDgd7S7xfrPctkOYQ7kKY8B8/JnvSNVy3D6zuEyurZhwhqIGADogson9v6TXLVDsNbzhLs21u0xLj9tRXMC1ZJIM5SQqaxnGyY6WNR3AZfEAMAPSc5WW577X5+LLtshsZYA0CufxUR7nRI/B4Av8JxbNgAAAAAqQMQAAABAlyBiAAAAoEsQMQAAANAliBgAAADoEkQMAAAAdAkiBgAAALoEEQMAAABdgogBAACALkHEAAAAQJcgYgAAAKBLEDEAAADQJYgYAAAA6BJEDAAAAHQJIgYAAAC6BBEDAAAAXYKIAQAAgC5BxAAAAECXIGIAAACgSxAxAAAA0CWIGAAAAOgSRAwAAAB0CSIGAAAAugQRAwAAAF2CiAEAAIAuQcQAAABAlyBiAAAAoEsQMQAAANAliBgAAADoEkQMAAAAdMn/raK8TQsdUb4AAAAASUVORK5CYII=" alt="" />