Maximal stable extremal regions 在opencv中有原型。可以用来检测文本区域。本文对比率他和SWT的结果
效果依情况而定。
int main( int argc, char** argv ) { char* filename = argc >= 2 ? argv[1] : (char*)"../mingpian.jpg"; Mat img0 = imread(filename, 1); Mat rgb_test = imread(filename, 1); vector<Mat>sbgr(rgb_test.channels()); split(rgb_test,sbgr); imshow("blue",sbgr[2]); Mat gray_img, mask_img; vector<vector<Point>> contours; cvtColor(img0,gray_img,COLOR_BGR2GRAY); MSER ms(5, 20,14400, 0.25,.2, 200, 1.01, 0.003,5 ); ms(sbgr[2],contours,mask_img); Mat wshed(gray_img.size(), CV_8UC3); wshed = Scalar::all(255); for ( int i = 0; i < contours.size(); i++ ) { const Point* p = &contours[i][0]; int n = (int)contours[i].size(); if (contourArea(Mat(contours[i]))<((gray_img.cols*gray_img.rows)/100)){ Rect a = boundingRect(contours[i]); if(a.width/a.height<5&&a.height/a.width<5){ for (int j = 0; j<n; j++) { Point sd = contours[i][j]; wshed.at<Vec3b>(sd.y,sd.x) = Vec3b(0,0,0); } rectangle(img0,Point(a.x,a.y),Point(a.x+a.width,a.y+a.height),Scalar(0,255,0),-1,8,0); } } } Mat gray_wshed,m_gaussianImage ; cvtColor(wshed,gray_wshed,COLOR_BGR2GRAY); gray_wshed.convertTo(m_gaussianImage,CV_32FC3); m_gaussianImage/=255; IplImage* textimage = cvCreateImage(cvSize(wshed.cols,wshed.rows),IPL_DEPTH_8U,1); imshow("sdf",sbgr[1]); waitKey(0); }
选择红色通道的原因是给名片在红色下对比度高,而且去处了红色背景
原图
mser处理之后处SWT处理