Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 10554 | Accepted: 3501 |
Description
Your task is to help the Borg (yes, really) by developing a program which helps the Borg to estimate the minimal cost of scanning a maze for the assimilation of aliens hiding in the maze, by moving in north, west, east, and south steps. The tricky thing is that the beginning of the search is conducted by a large group of over 100 individuals. Whenever an alien is assimilated, or at the beginning of the search, the group may split in two or more groups (but their consciousness is still collective.). The cost of searching a maze is definied as the total distance covered by all the groups involved in the search together. That is, if the original group walks five steps, then splits into two groups each walking three steps, the total distance is 11=5+3+3.
Input
Output
Sample Input
2
6 5
#####
#A#A##
# # A#
#S ##
#####
7 7
#####
#AAA###
# A#
# S ###
# #
#AAA###
#####
Sample Output
8
11
题意:求每个字母彼此之间的距离,找到一条最短路径将所有字母相连。
思路:用BFS枚举每个字母之间的距离,再用prim求出最短的一条路径。
收获:了解了prim要初始化和1相连的边权。
这题还要再做一遍。
#include <cstdio>
#include <iostream>
#include <cstdlib>
#include <algorithm>
#include <ctime>
#include <cmath>
#include <string>
#include <cstring>
#include <stack>
#include <queue>
#include <list>
#include <vector>
#include <map>
#include <set>
using namespace std; const int INF=0x3f3f3f3f;
const double eps=1e-;
const double PI=acos(-1.0);
#define maxn 1000
struct Node
{
int x, y, dis;
};
Node st, et;
int vis[maxn][maxn];
char map1[maxn][maxn];
int vis2[maxn];
int node[maxn][maxn];
int edge[maxn][maxn];
int dis[maxn];
int pre[maxn];
int dx[] = {, , -, };
int dy[] = {, -, ,};
int sum, n, m;
void bfs(int i, int j)
{
memset(vis, , sizeof vis);
queue<Node> q;
Node st = {i, j, };
vis[i][j] = ;
q.push(st);
while(!q.empty())
{
Node t = q.front();
q.pop();
if(node[t.x][t.y])
edge[node[st.x][st.y]][node[t.x][t.y]] = t.dis;
for(int i = ; i < ; i++)
{
int x0 = t.x + dx[i];
int y0 = t.y + dy[i];
if(!vis[x0][y0] && map1[x0][y0] != '#' && x0>= && x0 < m && y0 >= && y0 < n)
{
vis[x0][y0] = ;
Node f = {x0, y0, t.dis+};
q.push(f);
}
}
} }
int low[maxn];
int Prim()
{
int s=,i,count=,prim_sum=,t;
bool flag[maxn]={false};
flag[s] = true;
for(i=; i<=sum; i++)
low[i] = ;
while(count < sum)
{
int min_dis = ;
for(i=; i<=sum; i++)
{
if(!flag[i] && low[i]>edge[s][i])
low[i] = edge[s][i];
if(!flag[i] && low[i]<min_dis)
{
min_dis = low[i];
t = i;
}
}
s = t; count++;
flag[s] = true;
prim_sum += min_dis;
}
return prim_sum;
} int main()
{
int t;
scanf("%d", &t);
while(t--)
{
scanf("%d%d", &n, &m);
char temp[];
gets(temp);
sum = ;
memset(node, , sizeof node);
memset(edge, , sizeof edge);
for(int i = ; i < m; i++)
{
gets(map1[i]);
for(int j = ; j < n; j++)
{
if(map1[i][j] == 'S' || map1[i][j] == 'A')
node[i][j] = ++sum;
}
}
for(int i = ; i < m; i++)
for(int j = ; j < n; j++)
if(node[i][j])
bfs(i, j);
printf("%d\n", Prim());
}
return ;
}