POJ 2553 The Bottom of a Graph(强连通分量)

时间:2024-12-14 14:03:56

POJ 2553 The Bottom of a Graph

题目链接

题意:给定一个有向图,求出度为0的强连通分量

思路:缩点搞就可以

代码:

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <stack>
using namespace std; const int N = 5005; int n, m;
vector<int> g[N], save[N];
stack<int> S; int pre[N], dfn[N], dfs_clock, sccno[N], sccn; void dfs_scc(int u) {
pre[u] = dfn[u] = ++dfs_clock;
S.push(u);
for (int i = 0; i < g[u].size(); i++) {
int v = g[u][i];
if (!pre[v]) {
dfs_scc(v);
dfn[u] = min(dfn[u], dfn[v]);
} else if (!sccno[v]) dfn[u] = min(dfn[u], pre[v]);
}
if (dfn[u] == pre[u]) {
sccn++;
save[sccn].clear();
while (1) {
int x = S.top(); S.pop();
save[sccn].push_back(x);
sccno[x] = sccn;
if (x == u) break;
}
}
} void find_scc() {
dfs_clock = sccn = 0;
memset(pre, 0, sizeof(pre));
memset(sccno, 0, sizeof(sccno));
for (int i = 1; i <= n; i++)
if (!pre[i]) dfs_scc(i);
} int out[N];
int ans[N], an; int main() {
while (~scanf("%d", &n) && n) {
for (int i = 1; i <= n; i++) g[i].clear();
scanf("%d", &m);
int u, v;
while (m--) {
scanf("%d%d", &u, &v);
g[u].push_back(v);
}
find_scc();
memset(out, 0, sizeof(out));
for (int i = 1; i <= n; i++) {
for (int j = 0; j < g[i].size(); j++) {
int v = g[i][j];
if (sccno[i] != sccno[v]) {
out[sccno[i]]++;
}
}
}
an = 0;
for (int i = 1; i <= sccn; i++) {
if (!out[i]) {
for (int j = 0; j < save[i].size(); j++)
ans[an++] = save[i][j];
}
}
sort(ans, ans + an);
for (int i = 0; i < an; i++)
printf("%d%c", ans[i], i == an - 1 ? '\n' : ' ');
}
return 0;
}