POJ1904 King's Quest(完备匹配可行边:强连通分量)

时间:2024-09-11 09:06:20

题目大概就是说给一张二分图以及它的一个完备匹配,现在问X部的各个点可以与Y部那些些点匹配,使得X部其余点都能找到完备匹配。

枚举然后匹配,当然不行,会超时。

这题的解法是,在二分图基础上建一个有向图:原二分图中边(x,y)连<x,y>的弧,对于那个已知的匹配中的所有边(x,y)连<y,x>的弧,然后对于X部各个点x如果它到Y部的y点有直接的边且它们在同一个强连通分量,那么x就能和y匹配。

我对这个解法的理解是这样的,类似于匈牙利算法的增广路:

  • 如果x和y就属于给定的那个完备匹配那它们本来就在强连通分量上;
  • 否则,就在原匹配的基础上在构造的有向图上走,看能否找到一条“增广路”(其实不是增广路)去修正,看能否使得x匹配的点改成y——

x走向y,这条边必定不属于原匹配,那么这条边加入匹配集合

y走向x1,这条边必定属于原匹配,那么这条边从匹配集合中删去

x1走向y1,这条边必定不属于原匹配,那么这条边加入匹配集合

…… …… ……

最后如果就存在一个yn走能向x,这条边必定属于原匹配,删去;而删除这条边后,就没有和最开头加入匹配集合的那条(x,y)的边存在公共点的边了,(x,y)就是一个合法的匹配

感觉这解法很巧。而这二分图上的边最大独立集,性质挺多的,感觉也挺难运用这些性质。

 #include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define MAXN 4444
#define MAXM 2222*2222 struct Edge{
int v,next;
}edge[MAXM];
int NE,head[MAXN];
void addEdge(int u,int v){
edge[NE].v=v; edge[NE].next=head[u];
head[u]=NE++;
} int top,stack[MAXN];
bool instack[MAXN];
int dn,dfn[MAXN],low[MAXN];
int bn,belong[MAXN];
void tarjan(int u){
dfn[u]=low[u]=++dn;
stack[++top]=u; instack[u]=;
for(int i=head[u]; i!=-; i=edge[i].next){
int v=edge[i].v;
if(dfn[v]==){
tarjan(v);
low[u]=min(low[u],low[v]);
}else if(instack[v]){
low[u]=min(low[u],dfn[v]);
}
}
if(low[u]==dfn[u]){
int v; ++bn;
do{
v=stack[top--];
instack[v]=;
belong[v]=bn;
}while(u!=v);
}
} int main(){
int n,a,b;
while(~scanf("%d",&n)){
NE=;
memset(head,-,sizeof(head));
for(int i=; i<=n; ++i){
scanf("%d",&a);
while(a--){
scanf("%d",&b);
addEdge(i,b+n);
}
}
for(int i=; i<=n; ++i){
scanf("%d",&a);
addEdge(a+n,i);
}
top=dn=bn=;
memset(dfn,,sizeof(dfn));
memset(instack,,sizeof(instack));
for(int i=; i<=*n; ++i){
if(dfn[i]==){
tarjan(i);
}
}
for(int u=; u<=n; ++u){
int cnt=;
bool vis[MAXN]={};
for(int i=head[u]; i!=-; i=edge[i].next){
int v=edge[i].v;
if(belong[u]==belong[v]){
++cnt;
vis[v-n]=;
}
}
printf("%d",cnt);
for(int i=; i<=n; ++i){
if(vis[i]){
printf(" %d",i);
}
}
putchar('\n');
}
}
return ;
}