POJ2186 Popular Cows 强连通分量tarjan

时间:2022-04-14 05:33:20

做这题主要是为了学习一下tarjan的强连通分量,因为包括桥,双连通分量,强连通分量很多的求法其实都可以源于tarjan的这种方法,通过一个low,pre数组求出来。

题意:给你许多的A->B ,B->C这样的喜欢的关系,A->B ,B->C也意味着A->C,最后问你被全部别的人喜欢的cow有多少个。如果不告诉你用强连通分量,感觉可能会绕的远一些,但是如果知道了这个思路其实是很显然的。

首先是跑出每个强连通分量,在这种情况下,原来的图就变成了一棵树,一棵有有向边的树,然后不难发现,如果这棵树存在一个出度为0的点,那么它就很有可能是答案,为什么是可能呢?因为我们不知道是不是所有别的点都有路径连到它这里,所以判断的方法有这么几种吧。理论上如果只有1个出度为0的点应该就是答案了。还有一个是反向建图,然后从这个出度为0的点深搜,如果每个点都被搜到的话就说明这个点是可行的。

tarjan的算法大白书上有,具体不做过多的介绍,下面的代码有两种判断的,第一种简单,不用建图只需要统计出度,第二种复杂。在这道题了如果用Kosaraju算法会好过第二种,因为它搜出的强连通分量是按拓扑序的,tarjan则是不按的,所以用Kosaraju算法可以很容易求出那个出度为0的点。

#pragma warning(disable:4996)
#include<iostream>
#include<cstring>
#include<string>
#include<cstdio>
#include<vector>
#include<cmath>
#include<algorithm>
#include<stack>
#define maxn 10050
using namespace std; vector<int> G[maxn + 50];
int n, m; int out[maxn + 50];
int sccno[maxn + 50]; // 属于哪个强连通分量
int sccSize[maxn + 50];
int scc_cnt; // 强连通分量的数量 int pre[maxn + 50];
int low[maxn + 50];
int dfs_clock;
stack<int> S; int dfs(int u)
{
int lowu = pre[u] = ++dfs_clock;
S.push(u);
for (int i = 0; i < G[u].size(); i++){
int v = G[u][i];
if (!pre[v]){
int lowv = dfs(v);
lowu = min(lowu, lowv);
}
else if (!sccno[v]){
lowu = min(lowu, pre[v]);
}
}
if (lowu == pre[u]){
scc_cnt++;
while (1){
int x = S.top(); S.pop();
sccno[x] = scc_cnt;
sccSize[scc_cnt]++;
if (x == u) break;
}
}
return low[u] = lowu;
} void find_scc()
{
memset(sccno, 0, sizeof(sccno));
memset(pre, 0, sizeof(pre));
memset(sccSize, 0, sizeof(sccSize));
memset(low, 0, sizeof(low));
while (!S.empty()) S.pop();
dfs_clock = scc_cnt = 0;
for (int i = 1; i <= n; i++){
if (!pre[i]) dfs(i);
}
} vector<int> NG[maxn + 50]; void constructNG()
{
memset(out, 0, sizeof(out));
for (int i = 0; i <= scc_cnt; i++) NG[i].clear();
for (int i = 1; i <= n; i++){
for (int j = 0; j < G[i].size(); j++){
int u = i, v = G[i][j];
if (sccno[v] != sccno[u]){
out[sccno[u]]++;
NG[sccno[v]].push_back(sccno[u]);
}
}
}
} void ndfs(int u)
{
pre[u] = 1;
for (int i = 0; i < NG[u].size(); i++){
ndfs(NG[u][i]);
}
} int main()
{
while (cin >> n >> m)
{
for (int i = 0; i <= n; i++) G[i].clear();
int u, v;
for (int i = 0; i < m; i++){
scanf("%d%d", &u, &v);
G[u].push_back(v);
}
find_scc();
constructNG();
int foo = -1; int outnum = 0;
for (int i = 1; i <= scc_cnt; i++){
if (out[i] == 0){
foo = i; outnum++;
}
}
bool flag = true;
/*memset(pre, 0, sizeof(pre));
ndfs(foo);
bool flag = true;
for (int i = 1; i <= scc_cnt; i++){
if (!pre[i]){
flag = false; break;
}
}*/
if (outnum != 1) flag = false;
int ans = 0;
if (!flag) {
puts("0");
continue;
}
printf("%d\n", sccSize[foo]);
}
return 0;
}

POJ2186 Popular Cows 强连通分量tarjan的更多相关文章

  1. POJ2186 Popular Cows &lbrack;强连通分量&vert;缩点&rsqb;

    Popular Cows Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 31241   Accepted: 12691 De ...

  2. poj 2186 Popular Cows &lpar;强连通分量&plus;缩点&rpar;

    http://poj.org/problem?id=2186 Popular Cows Time Limit: 2000MS   Memory Limit: 65536K Total Submissi ...

  3. POJ 2186 Popular Cows --强连通分量

    题意:给定一个有向图,问有多少个点由任意顶点出发都能达到. 分析:首先,在一个有向无环图中,能被所有点达到点,出度一定是0. 先求出所有的强连通分支,然后把每个强连通分支收缩成一个点,重新建图,这样, ...

  4. poj2186 Popular Cows --- 强连通

    给一个有向图,问有多少结点是其它全部结点都能够到达的. 等价于,在一个有向无环图上,找出度为0 的结点.假设出度为0的结点仅仅有一个,那么这个就是答案.假设大于1个.则答案是0. 这题有环.所以先缩点 ...

  5. POJ 2186 Popular Cows&lpar;强连通分量缩点&rpar;

    题目链接:http://poj.org/problem?id=2186 题目意思大概是:给定N(N<=10000)个点和M(M<=50000)条有向边,求有多少个“受欢迎的点”.所谓的“受 ...

  6. POJ 2186 Popular Cows 强连通分量模板

    题意 强连通分量,找独立的块 强连通分量裸题 #include <cstdio> #include <cstdlib> #include <cstring> #in ...

  7. 强连通分量tarjan缩点——POJ2186 Popular Cows

    这里的Tarjan是基于DFS,用于求有向图的强联通分量. 运用了一个点dfn时间戳和low的关系巧妙地判断出一个强联通分量,从而实现一次DFS即可求出所有的强联通分量. §有向图中, u可达v不一定 ...

  8. 洛谷——P2341 &lbrack;HAOI2006&rsqb;受欢迎的牛&sol;&sol;POJ2186&colon;Popular Cows

    P2341 [HAOI2006]受欢迎的牛/POJ2186:Popular Cows 题目背景 本题测试数据已修复. 题目描述 每头奶牛都梦想成为牛棚里的明星.被所有奶牛喜欢的奶牛就是一头明星奶牛.所 ...

  9. 强连通分量&lpar;tarjan求强连通分量&rpar;

    双DFS方法就是正dfs扫一遍,然后将边反向dfs扫一遍.<挑战程序设计>上有说明. 双dfs代码: #include <iostream> #include <cstd ...

随机推荐

  1. padding标准盒模型和怪异盒子模型

    我们都知道padding是为块级元素设置内边距 但是在使用过程中,我们却会遇到一些问题.padding的标准盒模型和怪异盒模型 padding盒子模型 我们通过demo来讲这个问题,用文字干讲第一没意 ...

  2. iOS-OC-基本控件之UIPageControl

    UIPageControl(页面控制器,就是桌面的那些小点点,每个点代表一个界面) 父类是 UIControl. iOS开发中常用的基本控件,主要和UIScrollView一起使用,比较常用的就是有些 ...

  3. UILabel实现自适应高宽

    UILabel是iOS开发常用的控件.UILabel的属性需要了解,UILabel的特殊显示效果也需要我们掌握.UILabel自适应高宽度是很多初学者遇到的技术性难题.比如段文字,要让他完全地分行显示 ...

  4. &lbrack;ACM&lowbar;动态规划&rsqb; 最长上升子序列(LIS)

    问题描述:给n个数,找出最长子序列并输出 问题分析:本题是DAG(有向无环图)最长路问题,设d[i]为以i结尾的最长链的长度,则状态转移方程为:d[i]=max{0,d[j]|j<i & ...

  5. uva 10304

    最优二叉查找数 看了这位大牛 的博客 http://www.cnblogs.com/lpshou/archive/2012/04/26/2470914.html /****************** ...

  6. cc150&colon;实现一个算法来删除单链表中间的一个结点,仅仅给出指向那个结点的指针

    实现一个算法来删除单链表中间的一个结点,仅仅给出指向那个结点的指针. 样例: 输入:指向链表a->b->c->d->e中结点c的指针 结果:不须要返回什么,得到一个新链表:a- ...

  7. 像VUE一样写微信小程序-深入研究wepy框架

    像VUE一样写微信小程序-深入研究wepy框架 微信小程序自发布到如今已经有半年多的时间了,凭借微信平台的强大影响力,越来越多企业加入小程序开发. 小程序于M页比相比,有以下优势: 1.小程序拥有更多 ...

  8. RHEL7&period;2安装

    先在系统启动的时候按下Del键(有些系统是F2键)进入BIOS,设置从光盘启动. 系统只有2个USB口时,1个要接光驱,另外1个口不能同时接键盘和鼠标,可以接1个USB集线器,键盘和鼠标同时接入到集线 ...

  9. &period;Net Core MongoDB 简单操作。

    一:MongoDB 简单操作类.这里引用了MongoDB.Driver. using MongoDB.Bson; using MongoDB.Driver; using System; using S ...

  10. python爬虫之常见的加密方式

    前言 数据加密与解密通常是为了保证数据在传输过程中的安全性,自古以来就一直存在,古代主要应用在战争领域,战争中会有很多情报信息要传递,这些重要的信息都会经过加密,在发送到对应的人手上. 现代 ,在网络 ...