deeplearning.ai - 深层神经网络(Deep Neural Networks)

时间:2022-03-10 09:13:58

神经网络和深度学习
吴恩达 Andrew Ng

深层神经网络(Deep Neural Networks)

Deep L-layer Neural Networks

  • 有一个隐藏层的神经网络,就是一个两层神经网络
  • 算神经网络的层数时,只算隐藏层和输出层,输入层看作第0层
  • 有一些函数浅层的网络学习不了

Forward propagation in a deep network

deeplearning.ai - 深层神经网络(Deep Neural Networks)

Getting your matrix dimensions right

  • W [ l ] : ( n [ l ] , n [ l ] ) b [ l ] : ( n [ l ] , 1 )
  • A [ l ] : ( n [ l ] , m ) Z [ l ] : ( n [ l ] , m )
  • 确保前后矩阵一致

Why deep representations?

  • 登堂入室
  • 边缘探测器针对小区域
  • put together simpler things that has detected in order to detect more complex things
  • Circuit theory (电路理论)
  • There are some functions that you can compute with a L-layer deep neural network while shallower networks require exponentially more hidden units to compute.
  • 对于有些函数深层网络更合适

Forward and backward functions

  • deeplearning.ai - 深层神经网络(Deep Neural Networks)

  • backward propagation
    deeplearning.ai - 深层神经网络(Deep Neural Networks)

  • summary
    deeplearning.ai - 深层神经网络(Deep Neural Networks)

  • lots of complexity of your learning algorithm comes from the data rather than your code

Parameters and Hyper parameters

  • parameters(参数): W, b
  • hyper parameters(超参数) (determines the parameters)
    • learning rate
    • the number of iterations of gradient descent
    • the number of hidden layers
    • choice of activation function
  • 不断实验,找到合适的超参数 cycle of (Idea, Code, Experiment)
  • just try a few values for the hyper parameters and double check

Deep learning and the human brain

  • Today even neuroscientists have almost no idea what even a single neuron is doing.
  • deeplearning.ai - 深层神经网络(Deep Neural Networks)