Neural Networks and Deep Learning(week4)Deep Neural Network - Application(图像分类)

时间:2022-12-14 17:49:01

Deep Neural Network for Image Classification: Application

预先实现的代码,保存在本地 dnn_app_utils_v3.py

import numpy as np import matplotlib.pyplot as plt import h5py def sigmoid(Z): """ Implements the sigmoid activation in numpy Arguments: Z -- numpy array of any shape Returns: A -- output of sigmoid(z), same shape as Z cache -- returns Z as well, useful during backpropagation """ A = 1/(1+np.exp(-Z)) cache = Z return A, cache def relu(Z): """ Implement the RELU function. Arguments: Z -- Output of the linear layer, of any shape Returns: A -- Post-activation parameter, of the same shape as Z cache -- a python dictionary containing "A" ; stored for computing the backward pass efficiently """ A = np.maximum(0,Z) assert(A.shape == Z.shape) cache = Z return A, cache def relu_backward(dA, cache): """ Implement the backward propagation for a single RELU unit. Arguments: dA -- post-activation gradient, of any shape cache -- 'Z' where we store for computing backward propagation efficiently Returns: dZ -- Gradient of the cost with respect to Z """ Z = cache dZ = np.array(dA, copy=True) # just converting dz to a correct object. # When z <= 0, you should set dz to 0 as well.  dZ[Z <= 0] = 0 assert (dZ.shape == Z.shape) return dZ def sigmoid_backward(dA, cache): """ Implement the backward propagation for a single SIGMOID unit. Arguments: dA -- post-activation gradient, of any shape cache -- 'Z' where we store for computing backward propagation efficiently Returns: dZ -- Gradient of the cost with respect to Z """ Z = cache s = 1/(1+np.exp(-Z)) dZ = dA * s * (1-s) assert (dZ.shape == Z.shape) return dZ def load_data(): train_dataset = h5py.File('datasets/train_catvnoncat.h5', "r") train_set_x_orig = np.array(train_dataset["train_set_x"][:]) # your train set features train_set_y_orig = np.array(train_dataset["train_set_y"][:]) # your train set labels  test_dataset = h5py.File('datasets/test_catvnoncat.h5', "r") test_set_x_orig = np.array(test_dataset["test_set_x"][:]) # your test set features test_set_y_orig = np.array(test_dataset["test_set_y"][:]) # your test set labels  classes = np.array(test_dataset["list_classes"][:]) # the list of classes  train_set_y_orig = train_set_y_orig.reshape((1, train_set_y_orig.shape[0])) test_set_y_orig = test_set_y_orig.reshape((1, test_set_y_orig.shape[0])) return train_set_x_orig, train_set_y_orig, test_set_x_orig, test_set_y_orig, classes def initialize_parameters(n_x, n_h, n_y): """ Argument: n_x -- size of the input layer n_h -- size of the hidden layer n_y -- size of the output layer Returns: parameters -- python dictionary containing your parameters: W1 -- weight matrix of shape (n_h, n_x) b1 -- bias vector of shape (n_h, 1) W2 -- weight matrix of shape (n_y, n_h) b2 -- bias vector of shape (n_y, 1) """ np.random.seed(1) W1 = np.random.randn(n_h, n_x)*0.01 b1 = np.zeros((n_h, 1)) W2 = np.random.randn(n_y, n_h)*0.01 b2 = np.zeros((n_y, 1)) assert(W1.shape == (n_h, n_x)) assert(b1.shape == (n_h, 1)) assert(W2.shape == (n_y, n_h)) assert(b2.shape == (n_y, 1)) parameters = {"W1": W1, "b1": b1, "W2": W2, "b2": b2} return parameters def initialize_parameters_deep(layer_dims): """ Arguments: layer_dims -- python array (list) containing the dimensions of each layer in our network Returns: parameters -- python dictionary containing your parameters "W1", "b1", ..., "WL", "bL": Wl -- weight matrix of shape (layer_dims[l], layer_dims[l-1]) bl -- bias vector of shape (layer_dims[l], 1) """ np.random.seed(1) parameters = {} L = len(layer_dims) # number of layers in the network for l in range(1, L): parameters['W' + str(l)] = np.random.randn(layer_dims[l], layer_dims[l-1]) / np.sqrt(layer_dims[l-1]) #*0.01 parameters['b' + str(l)] = np.zeros((layer_dims[l], 1)) assert(parameters['W' + str(l)].shape == (layer_dims[l], layer_dims[l-1])) assert(parameters['b' + str(l)].shape == (layer_dims[l], 1)) return parameters def linear_forward(A, W, b): """ Implement the linear part of a layer's forward propagation. Arguments: A -- activations from previous layer (or input data): (size of previous layer, number of examples) W -- weights matrix: numpy array of shape (size of current layer, size of previous layer) b -- bias vector, numpy array of shape (size of the current layer, 1) Returns: Z -- the input of the activation function, also called pre-activation parameter cache -- a python dictionary containing "A", "W" and "b" ; stored for computing the backward pass efficiently """ Z = W.dot(A) + b assert(Z.shape == (W.shape[0], A.shape[1])) cache = (A, W, b) return Z, cache def linear_activation_forward(A_prev, W, b, activation): """ Implement the forward propagation for the LINEAR->ACTIVATION layer Arguments: A_prev -- activations from previous layer (or input data): (size of previous layer, number of examples) W -- weights matrix: numpy array of shape (size of current layer, size of previous layer) b -- bias vector, numpy array of shape (size of the current layer, 1) activation -- the activation to be used in this layer, stored as a text string: "sigmoid" or "relu" Returns: A -- the output of the activation function, also called the post-activation value cache -- a python dictionary containing "linear_cache" and "activation_cache"; stored for computing the backward pass efficiently """ if activation == "sigmoid": # Inputs: "A_prev, W, b". Outputs: "A, activation_cache". Z, linear_cache = linear_forward(A_prev, W, b) A, activation_cache = sigmoid(Z) elif activation == "relu": # Inputs: "A_prev, W, b". Outputs: "A, activation_cache". Z, linear_cache = linear_forward(A_prev, W, b) A, activation_cache = relu(Z) assert (A.shape == (W.shape[0], A_prev.shape[1])) cache = (linear_cache, activation_cache) return A, cache def L_model_forward(X, parameters): """ Implement forward propagation for the [LINEAR->RELU]*(L-1)->LINEAR->SIGMOID computation Arguments: X -- data, numpy array of shape (input size, number of examples) parameters -- output of initialize_parameters_deep() Returns: AL -- last post-activation value caches -- list of caches containing: every cache of linear_relu_forward() (there are L-1 of them, indexed from 0 to L-2) the cache of linear_sigmoid_forward() (there is one, indexed L-1) """ caches = [] A = X L = len(parameters) // 2 # number of layers in the neural network # Implement [LINEAR -> RELU]*(L-1). Add "cache" to the "caches" list. for l in range(1, L): A_prev = A A, cache = linear_activation_forward(A_prev, parameters['W' + str(l)], parameters['b' + str(l)], activation = "relu") caches.append(cache) # Implement LINEAR -> SIGMOID. Add "cache" to the "caches" list. AL, cache = linear_activation_forward(A, parameters['W' + str(L)], parameters['b' + str(L)], activation = "sigmoid") caches.append(cache) assert(AL.shape == (1,X.shape[1])) return AL, caches def compute_cost(AL, Y): """ Implement the cost function defined by equation (7). Arguments: AL -- probability vector corresponding to your label predictions, shape (1, number of examples) Y -- true "label" vector (for example: containing 0 if non-cat, 1 if cat), shape (1, number of examples) Returns: cost -- cross-entropy cost """ m = Y.shape[1] # Compute loss from aL and y. cost = (1./m) * (-np.dot(Y,np.log(AL).T) - np.dot(1-Y, np.log(1-AL).T)) cost = np.squeeze(cost) # To make sure your cost's shape is what we expect (e.g. this turns [[17]] into 17). assert(cost.shape == ()) return cost def linear_backward(dZ, cache): """ Implement the linear portion of backward propagation for a single layer (layer l) Arguments: dZ -- Gradient of the cost with respect to the linear output (of current layer l) cache -- tuple of values (A_prev, W, b) coming from the forward propagation in the current layer Returns: dA_prev -- Gradient of the cost with respect to the activation (of the previous layer l-1), same shape as A_prev dW -- Gradient of the cost with respect to W (current layer l), same shape as W db -- Gradient of the cost with respect to b (current layer l), same shape as b """ A_prev, W, b = cache m = A_prev.shape[1] dW = 1./m * np.dot(dZ,A_prev.T) db = 1./m * np.sum(dZ, axis = 1, keepdims = True) dA_prev = np.dot(W.T,dZ) assert (dA_prev.shape == A_prev.shape) assert (dW.shape == W.shape) assert (db.shape == b.shape) return dA_prev, dW, db def linear_activation_backward(dA, cache, activation): """ Implement the backward propagation for the LINEAR->ACTIVATION layer. Arguments: dA -- post-activation gradient for current layer l cache -- tuple of values (linear_cache, activation_cache) we store for computing backward propagation efficiently activation -- the activation to be used in this layer, stored as a text string: "sigmoid" or "relu" Returns: dA_prev -- Gradient of the cost with respect to the activation (of the previous layer l-1), same shape as A_prev dW -- Gradient of the cost with respect to W (current layer l), same shape as W db -- Gradient of the cost with respect to b (current layer l), same shape as b """ linear_cache, activation_cache = cache if activation == "relu": dZ = relu_backward(dA, activation_cache) dA_prev, dW, db = linear_backward(dZ, linear_cache) elif activation == "sigmoid": dZ = sigmoid_backward(dA, activation_cache) dA_prev, dW, db = linear_backward(dZ, linear_cache) return dA_prev, dW, db def L_model_backward(AL, Y, caches): """ Implement the backward propagation for the [LINEAR->RELU] * (L-1) -> LINEAR -> SIGMOID group Arguments: AL -- probability vector, output of the forward propagation (L_model_forward()) Y -- true "label" vector (containing 0 if non-cat, 1 if cat) caches -- list of caches containing: every cache of linear_activation_forward() with "relu" (there are (L-1) or them, indexes from 0 to L-2) the cache of linear_activation_forward() with "sigmoid" (there is one, index L-1) Returns: grads -- A dictionary with the gradients grads["dA" + str(l)] = ... grads["dW" + str(l)] = ... grads["db" + str(l)] = ... """ grads = {} L = len(caches) # the number of layers m = AL.shape[1] Y = Y.reshape(AL.shape) # after this line, Y is the same shape as AL # Initializing the backpropagation dAL = - (np.divide(Y, AL) - np.divide(1 - Y, 1 - AL)) # Lth layer (SIGMOID -> LINEAR) gradients. Inputs: "AL, Y, caches". Outputs: "grads["dAL"], grads["dWL"], grads["dbL"] current_cache = caches[L-1] grads["dA" + str(L-1)], grads["dW" + str(L)], grads["db" + str(L)] = linear_activation_backward(dAL, current_cache, activation = "sigmoid") for l in reversed(range(L-1)): # lth layer: (RELU -> LINEAR) gradients. current_cache = caches[l] dA_prev_temp, dW_temp, db_temp = linear_activation_backward(grads["dA" + str(l + 1)], current_cache, activation = "relu") grads["dA" + str(l)] = dA_prev_temp grads["dW" + str(l + 1)] = dW_temp grads["db" + str(l + 1)] = db_temp return grads def update_parameters(parameters, grads, learning_rate): """ Update parameters using gradient descent Arguments: parameters -- python dictionary containing your parameters grads -- python dictionary containing your gradients, output of L_model_backward Returns: parameters -- python dictionary containing your updated parameters parameters["W" + str(l)] = ... parameters["b" + str(l)] = ... """ L = len(parameters) // 2 # number of layers in the neural network # Update rule for each parameter. Use a for loop. for l in range(L): parameters["W" + str(l+1)] = parameters["W" + str(l+1)] - learning_rate * grads["dW" + str(l+1)] parameters["b" + str(l+1)] = parameters["b" + str(l+1)] - learning_rate * grads["db" + str(l+1)] return parameters def predict(X, y, parameters): """ This function is used to predict the results of a L-layer neural network. Arguments: X -- data set of examples you would like to label parameters -- parameters of the trained model Returns: p -- predictions for the given dataset X """ m = X.shape[1] n = len(parameters) // 2 # number of layers in the neural network p = np.zeros((1,m)) # Forward propagation probas, caches = L_model_forward(X, parameters) # convert probas to 0/1 predictions for i in range(0, probas.shape[1]): if probas[0,i] > 0.5: p[0,i] = 1 else: p[0,i] = 0 #print results #print ("predictions: " + str(p)) #print ("true labels: " + str(y)) print("Accuracy: " + str(np.sum((p == y)/m))) return p def print_mislabeled_images(classes, X, y, p): """ Plots images where predictions and truth were different. X -- dataset y -- true labels p -- predictions """ a = p + y mislabeled_indices = np.asarray(np.where(a == 1)) plt.rcParams['figure.figsize'] = (40.0, 40.0) # set default size of plots num_images = len(mislabeled_indices[0]) for i in range(num_images): index = mislabeled_indices[1][i] plt.subplot(2, num_images, i + 1) plt.imshow(X[:,index].reshape(64,64,3), interpolation='nearest') plt.axis('off') plt.title("Prediction: " + classes[int(p[0,index])].decode("utf-8") + " \n Class: " + classes[y[0,index]].decode("utf-8"))

1 - 导入包

import time import numpy as np import h5py import matplotlib.pyplot as plt import scipy from PIL import Image from scipy import ndimage import skimage from dnn_app_utils_v3 import *

%matplotlib inline plt.rcParams['figure.figsize'] = (5.0, 4.0) # set default size of plots
plt.rcParams['image.interpolation'] = 'nearest' plt.rcParams['image.cmap'] = 'gray'

%load_ext autoreload %autoreload 2 np.random.seed(1)

2 - 导入数据集(Cat vs non-Cat)

Problem Statement: You are given a dataset ("data.h5") containing:

  • m_train个图像训练集(cat-1, non-cat-0
  • m_test个图像测试集(cat , non-cat)
  • 每个图像的shape:(num_px, num_px, 3)(RGB)
train_x_orig, train_y, test_x_orig, test_y, classes = load_data()

下面的代码将显示数据集中的图像:

# Example of a picture index = 19 plt.imshow(train_x_orig[index]) print ("y = " + str(train_y[0,index]) + ". It's a " + classes[train_y[0,index]].decode("utf-8") + " picture.")
y = 1. It's a cat picture.
Neural Networks and Deep Learning(week4)Deep Neural Network - Application(图像分类)
# Explore your dataset  m_train = train_x_orig.shape[0] num_px = train_x_orig.shape[1] m_test = test_x_orig.shape[0] print ("Number of training examples: " + str(m_train)) print ("Number of testing examples: " + str(m_test)) print ("Each image is of size: (" + str(num_px) + ", " + str(num_px) + ", 3)") print ("train_x_orig shape: " + str(train_x_orig.shape)) print ("train_y shape: " + str(train_y.shape)) print ("test_x_orig shape: " + str(test_x_orig.shape)) print ("test_y shape: " + str(test_y.shape))
Number of training examples: 209
Number of testing examples: 50
Each image is of size: (64, 64, 3)
train_x_orig shape: (209, 64, 64, 3)
train_y shape: (1, 209)
test_x_orig shape: (50, 64, 64, 3)
test_y shape: (1, 50)

2.2 reshape和标准化数据

Neural Networks and Deep Learning(week4)Deep Neural Network - Application(图像分类)

# Reshape the training and test examples  train_x_flatten = train_x_orig.reshape(train_x_orig.shape[0], -1).T # The "-1" makes reshape flatten the remaining dimensions test_x_flatten = test_x_orig.reshape(test_x_orig.shape[0], -1).T # Standardize data to have feature values between 0 and 1. train_x = train_x_flatten/255. test_x = test_x_flatten/255. print ("train_x's shape: " + str(train_x.shape)) print ("test_x's shape: " + str(test_x.shape))
train_x's shape: (12288, 209)
test_x's shape: (12288, 50)

12,288 个 64×64×3 (重塑图像向量的 size)

3 - 模型的结构

你将构建两种不同的模型:一个2层神经网络和一个L层深层神经网络;然后比较两种模型的性能,并为 L 测试不同值 

3.1 - 2-layer neural network

Neural Networks and Deep Learning(week4)Deep Neural Network - Application(图像分类)

The model can be summarized as: INPUT -> LINEAR -> RELU -> LINEAR -> SIGMOID -> OUTPUT.

 Neural Networks and Deep Learning(week4)Deep Neural Network - Application(图像分类)

3.2 - L-layer deep neural network

 Neural Networks and Deep Learning(week4)Deep Neural Network - Application(图像分类)

The model can be summarized as: [LINEAR -> RELU] × (L-1) -> LINEAR -> SIGMOID

 Neural Networks and Deep Learning(week4)Deep Neural Network - Application(图像分类)

3.3 - 常规方法(构建深度学习)

1. Initialize parameters / Define hyperparameters (初始化参数/定义超参数)

2. Loop for num_iterations:(迭代 num_iterations 次)
      a. Forward propagation     (前向传播)
       b. Compute cost function  (计算代价函数)
       c. Backward propagation   (后向传播)
       d. Update parameters (using parameters, and grads from backprop) (更新参数--使用后向传播得到的参数和梯度)

4. Use trained parameters to predict labels (使用训练好的参数预测标签)
 

4 - 两层神经网络

Question: 使用下面函数实现该结构: LINEAR -> RELU -> LINEAR -> SIGMOID

def initialize_parameters(n_x, n_h, n_y): ... return parameters def linear_activation_forward(A_prev, W, b, activation): ... return A, cache def compute_cost(AL, Y): ... return cost def linear_activation_backward(dA, cache, activation): ... return dA_prev, dW, db def update_parameters(parameters, grads, learning_rate): ... return parameters
### CONSTANTS DEFINING THE MODEL #### n_x = 12288 # num_px * num_px * 3 n_h = 7 n_y = 1 layers_dims = (n_x, n_h, n_y)
# GRADED FUNCTION: two_layer_model def two_layer_model(X, Y, layers_dims, learning_rate = 0.0075, num_iterations = 3000, print_cost=False): """ Implements a two-layer neural network: LINEAR->RELU->LINEAR->SIGMOID. Arguments: X -- input data, of shape (n_x, number of examples) Y -- true "label" vector (containing 0 if cat, 1 if non-cat), of shape (1, number of examples) layers_dims -- dimensions of the layers (n_x, n_h, n_y) num_iterations -- number of iterations of the optimization loop learning_rate -- learning rate of the gradient descent update rule print_cost -- If set to True, this will print the cost every 100 iterations Returns: parameters -- a dictionary containing W1, W2, b1, and b2 """ np.random.seed(1) grads = {} costs = [] # to keep track of the cost m = X.shape[1] # number of examples (n_x, n_h, n_y) = layers_dims # Initialize parameters dictionary, by calling one of the functions you'd previously implemented ### START CODE HERE ### (≈ 1 line of code) parameters = initialize_parameters(n_x, n_h, n_y) ### END CODE HERE ### # Get W1, b1, W2 and b2 from the dictionary parameters. W1 = parameters["W1"] b1 = parameters["b1"] W2 = parameters["W2"] b2 = parameters["b2"] # Loop (gradient descent) for i in range(0, num_iterations): # Forward propagation: LINEAR -> RELU -> LINEAR -> SIGMOID. Inputs: "X, W1, b1". Output: "A1, cache1, A2, cache2". ### START CODE HERE ### (≈ 2 lines of code) A1, cache1 = linear_activation_forward(X, W1, b1, activation='relu') A2, cache2 = linear_activation_forward(A1, W2, b2, activation='sigmoid') ### END CODE HERE ### # Compute cost ### START CODE HERE ### (≈ 1 line of code) cost = compute_cost(A2, Y) ### END CODE HERE ### # Initializing backward propagation dA2 = - (np.divide(Y, A2) - np.divide(1 - Y, 1 - A2)) # Backward propagation. Inputs: "dA2, cache2, cache1". Outputs: "dA1, dW2, db2; also dA0 (not used), dW1, db1". ### START CODE HERE ### (≈ 2 lines of code) dA1, dW2, db2 = linear_activation_backward(dA2, cache2, activation='sigmoid') dA0, dW1, db1 = linear_activation_backward(dA1, cache1, activation='relu') ### END CODE HERE ### # Set grads['dWl'] to dW1, grads['db1'] to db1, grads['dW2'] to dW2, grads['db2'] to db2 grads['dW1'] = dW1 grads['db1'] = db1 grads['dW2'] = dW2 grads['db2'] = db2 # Update parameters. ### START CODE HERE ### (approx. 1 line of code) parameters = update_parameters(parameters, grads, learning_rate=learning_rate) ### END CODE HERE ### # Retrieve W1, b1, W2, b2 from parameters W1 = parameters["W1"] b1 = parameters["b1"] W2 = parameters["W2"] b2 = parameters["b2"] # Print the cost every 100 training example if print_cost and i % 100 == 0: print("Cost after iteration {}: {}".format(i, np.squeeze(cost))) if print_cost and i % 100 == 0: costs.append(cost) # plot the cost  plt.plot(np.squeeze(costs)) plt.ylabel('cost') plt.xlabel('iterations (per tens)') plt.title("Learning rate =" + str(learning_rate)) plt.show() return parameters
parameters = two_layer_model(train_x, train_y, layers_dims = (n_x, n_h, n_y), num_iterations = 2500, print_cost=True)
Cost after iteration 0: 0.693049735659989
Cost after iteration 100: 0.6464320953428849
Cost after iteration 200: 0.6325140647912678
Cost after iteration 300: 0.6015024920354665
Cost after iteration 400: 0.5601966311605748
Cost after iteration 500: 0.5158304772764729
Cost after iteration 600: 0.4754901313943325
Cost after iteration 700: 0.43391631512257495
Cost after iteration 800: 0.40079775362038844
Cost after iteration 900: 0.3580705011323798
Cost after iteration 1000: 0.3394281538366413
Cost after iteration 1100: 0.30527536361962654
Cost after iteration 1200: 0.27491377282130164
Cost after iteration 1300: 0.2468176821061486
Cost after iteration 1400: 0.19850735037466108
Cost after iteration 1500: 0.17448318112556666
Cost after iteration 1600: 0.17080762978097128
Cost after iteration 1700: 0.11306524562164708
Cost after iteration 1800: 0.09629426845937153
Cost after iteration 1900: 0.08342617959726871
Cost after iteration 2000: 0.07439078704319085
Cost after iteration 2100: 0.06630748132267934
Cost after iteration 2200: 0.059193295010381744
Cost after iteration 2300: 0.053361403485605585
Cost after iteration 2400: 0.048554785628770226
Neural Networks and Deep Learning(week4)Deep Neural Network - Application(图像分类)
predictions_train = predict(train_x, train_y, parameters)

Expected Output:

Accuracy 1.0

 

predictions_test = predict(test_x, test_y, parameters)

Expected Output:

Accuracy 0.72


5 - L层神经网络

Question: 使用下面函数实现该结构: [LINEAR -> RELU]×(L-1) -> LINEAR -> SIGMOID

def initialize_parameters_deep(layer_dims): ... return parameters def L_model_forward(X, parameters): ... return AL, caches def compute_cost(AL, Y): ... return cost def L_model_backward(AL, Y, caches): ... return grads def update_parameters(parameters, grads, learning_rate): ... return parameters
### CONSTANTS ### layers_dims = [12288, 20, 7, 5, 1] # 5-layer model
# GRADED FUNCTION: L_layer_model def L_layer_model(X, Y, layers_dims, learning_rate = 0.0075, num_iterations = 3000, print_cost=False):#lr was 0.009 """ Implements a L-layer neural network: [LINEAR->RELU]*(L-1)->LINEAR->SIGMOID. Arguments: X -- data, numpy array of shape (number of examples, num_px * num_px * 3) Y -- true "label" vector (containing 0 if cat, 1 if non-cat), of shape (1, number of examples) layers_dims -- list containing the input size and each layer size, of length (number of layers + 1). learning_rate -- learning rate of the gradient descent update rule num_iterations -- number of iterations of the optimization loop print_cost -- if True, it prints the cost every 100 steps Returns: parameters -- parameters learnt by the model. They can then be used to predict. """ np.random.seed(1) costs = [] # keep track of cost # Parameters initialization. ### START CODE HERE ### parameters = initialize_parameters_deep(layers_dims) ### END CODE HERE ### # Loop (gradient descent) for i in range(0, num_iterations): # Forward propagation: [LINEAR -> RELU]*(L-1) -> LINEAR -> SIGMOID. ### START CODE HERE ### (≈ 1 line of code) AL, caches = L_model_forward(X, parameters) ### END CODE HERE ### # Compute cost. ### START CODE HERE ### (≈ 1 line of code) cost = compute_cost(AL, Y) ### END CODE HERE ### # Backward propagation. ### START CODE HERE ### (≈ 1 line of code) grads = L_model_backward(AL, Y, caches) ### END CODE HERE ### # Update parameters. ### START CODE HERE ### (≈ 1 line of code) parameters = update_parameters(parameters, grads, learning_rate=learning_rate) ### END CODE HERE ### # Print the cost every 100 training example if print_cost and i % 100 == 0: print ("Cost after iteration %i: %f" %(i, cost)) if print_cost and i % 100 == 0: costs.append(cost) # plot the cost  plt.plot(np.squeeze(costs)) plt.ylabel('cost') plt.xlabel('iterations (per tens)') plt.title("Learning rate =" + str(learning_rate)) plt.show() return parameters
parameters = L_layer_model(train_x, train_y, layers_dims, num_iterations = 2500, print_cost = True)
Cost after iteration 0: 0.771749
Cost after iteration 100: 0.672053
Cost after iteration 200: 0.648263
Cost after iteration 300: 0.611507
Cost after iteration 400: 0.567047
Cost after iteration 500: 0.540138
Cost after iteration 600: 0.527930
Cost after iteration 700: 0.465477
Cost after iteration 800: 0.369126
Cost after iteration 900: 0.391747
Cost after iteration 1000: 0.315187
Cost after iteration 1100: 0.272700
Cost after iteration 1200: 0.237419
Cost after iteration 1300: 0.199601
Cost after iteration 1400: 0.189263
Cost after iteration 1500: 0.161189
Cost after iteration 1600: 0.148214
Cost after iteration 1700: 0.137775
Cost after iteration 1800: 0.129740
Cost after iteration 1900: 0.121225
Cost after iteration 2000: 0.113821
Cost after iteration 2100: 0.107839
Cost after iteration 2200: 0.102855
Cost after iteration 2300: 0.100897
Cost after iteration 2400: 0.092878
Neural Networks and Deep Learning(week4)Deep Neural Network - Application(图像分类)
pred_train = predict(train_x, train_y, parameters)

 

Train Accuracy 0.985645933014

 

pred_test = predict(test_x, test_y, parameters)

Expected Output:

Test Accuracy 0.8

在相同的测试集上,你的5层神经网络的性能(80%)比2层神经网络(72%)要好

6 - 结果分析

print_mislabeled_images(classes, test_x, test_y, pred_test)

Neural Networks and Deep Learning(week4)Deep Neural Network - Application(图像分类)Neural Networks and Deep Learning(week4)Deep Neural Network - Application(图像分类)

有几种类型的图像模型往往做的不好,包括:

  • 猫的身体在一个不寻常位置出现
  • 猫的背景与背景相似
  • 不寻常的猫色和各种相机角度亮度的图像尺度变化(猫很大或很小的图像)

 

7 - 测试你的图片

## START CODE HERE ## my_image = "my_image2.jpg" # change this to the name of your image file  my_label_y = [1] # the true class of your image (1 -> cat, 0 -> non-cat) ## END CODE HERE ##  fname = "images/" + my_image image = np.array(plt.imread(fname)) my_image = scipy.misc.imresize(image, size=(num_px,num_px)).reshape((num_px*num_px*3,1)) my_predicted_image = predict(my_image, my_label_y, parameters) plt.imshow(image) print ("y = " + str(np.squeeze(my_predicted_image)) + ", your L-layer model predicts a \"" + classes[int(np.squeeze(my_predicted_image)),].decode("utf-8") + "\" picture.")
Accuracy: 1.0
y = 1.0, your L-layer model predicts a "cat" picture.

Neural Networks and Deep Learning(week4)Deep Neural Network - Application(图像分类)