题目链接:http://codeforces.com/contest/327/problem/C
首先先算出一个周期里面的值,保存在ans里面,就是平常的快速幂模m做法.
然后要计算一个公式,比如有k个部分,那么对于没一个位置i, 都有2^i + 2^(i+n) + ... + 2^(i+(k-1)*n) = 2^i(1 + 2^n + ... + 2^((k-1)*n)) = 2^i * (1-2^(n*k))/(1-2^n)
所以结果就是ans * (1-2^(n*k))/(1-2^n) % MOD;
然后就是关键计算(1-2^(n*k))/(1-2^n) % MOD;
用到费马小定理a^(p-1)同余于1(mod 1).p是一个质数,那么a^(p-2) * a 同余于1(mod 1) ,所以a 的逆元就是 a^(p-2)
MOD是一个质数,所以(1-2^(n*k))/(1-2^n) % MOD = (2^(n*k)-1)/(2^n-1) % MOD = (2^(n*k)-1)%MOD * ((2^n-1)^(MOD-2))%MOD
/*
* =====================================================================================
* Filename: magic.cpp
* Created: 19/07/2013 12:27:18
* Author: liuxueyang (lxy), 1459917536@qq.com
* Organization: Hunan University
*
* =====================================================================================
*/ /*
ID: zypz4571
LANG: C++
TASK: magic
*/
#include <cstdlib>
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <cctype>
#include <algorithm>
#include <queue>
#include <set>
#include <stack>
#include <map>
#include <list>
using namespace std;
#define INF 0x3f3f3f3f
const double eps=1e-;
char a[];
const int MOD=;
#define LL long long
int k;
LL quick(LL a, LL b) {
LL ans=;
while (b) {
if(b&) ans=(ans*a)%MOD; b/=; a*=a; a%=MOD;
}
return ans;
}
int main ( int argc, char *argv[] )
{
#ifndef ONLINE_JUDGE
freopen("in.txt", "r", stdin);
#endif
int k; string s; cin>>s>>k; LL n=s.size();
LL a=quick(,n*k)-+MOD; a=(a+MOD)%MOD;
LL b=quick((quick(,n)-+MOD)%MOD,MOD-); b=(b+MOD)%MOD;
LL ans=;
for(size_t i = ; i < n; ++i) if (s[i]==''||s[i]=='') ans=(ans+quick(,i))%MOD;
cout<<a*b%MOD*ans%MOD<<endl;
return EXIT_SUCCESS;
} /* ---------- end of function main ---------- */
搞定,收工