URAL 1141. RSA Attack(欧拉定理+扩展欧几里得+快速幂模)

时间:2023-12-16 08:11:02

题目链接

题意 : 给你n,e,c,并且知道me ≡ c (mod n),而且n = p*q,pq都为素数。

思路 : 这道题的确与题目名字很相符,是个RSA算法,目前地球上最重要的加密算法。RSA算法原理 。

看到这个算法之后,就知道这个题是求cd≡m(mod n),要求m,就要先求d,而d则是e的模反元素。

如果两个正整数a和n互质,那么一定可以找到整数b,使得 ab-1 被n整除,或者说ab被n除的余数是1。这时,b就叫做a的模反元素。

由模反元素可知,ed≡1(mod Phi[n])(phi[n]代表n的欧拉函数)。

根据欧拉函数性质可知,phi[n] = (p-1)*(q-1)。

求e的逆元d需要用扩展欧几里得,ed+k*phi[n]=1.要注意处理求出的d是负数的情况。

最后求cd就要用到快速幂模,然后再MOD n 就是所求m。

#include <stdio.h>
#include <string.h>
#include <iostream>
typedef long long LL ; using namespace std ; bool isprime(int n)
{
for(int i = ; i * i <= n ; i++)
{
if(n % i == ) return false ;
}
return true ;
}
int multimod(int a,int n,int m)
{
int tmp = a , res = ; while(n)
{
//printf("11\n") ;
if(n & )
{
res *= tmp ;
res %= m ;
}
tmp *= tmp ;
tmp %= m ;
n >>= ;
//printf("%d\n",n) ;
}
return res ;
}
void exde(int a,int b,int &x,int& y)
{
int t ;
if(b == )
{
x = ;
y = ;
return ;
//return a;
}
exde(b,a%b,x,y) ;
t = x ;
x = y ;
y = t-(a/b)*y;
//return d ;
}
int main()
{
int T ,e,c,n;
scanf("%d",&T) ;
while(T--)
{
scanf("%d %d %d",&e,&n,&c) ;
int p,q ,x,y;
//printf("1\n");
for(int i = ; i * i <= n ; i++)
{
if((n % i == ) && isprime(i) && isprime(n / i))
{
p = i ;
q = n / i ;
break ;
}
}
//printf("p = %d q = %d\n",p,q) ;
exde(e,(p-)*(q-),x,y);
//printf("%d %d\n",p,q) ;
int d = x ;
//printf("%d\n",d+(p-1)*(q-1)) ;
if(d < )
d = (d+(p-)*(q-)) %((p-)*(q-)) ;
//printf("%d\n",d) ;
int ans = multimod(c,d,n) ;
printf("%d\n",ans) ;
}
return ;
}