[SDOI2015]序列统计(多项式快速幂)

时间:2024-12-04 08:05:31

题目描述

小C有一个集合S,里面的元素都是小于M的非负整数。他用程序编写了一个数列生成器,可以生成一个长度为N的数列,数列中的每个数都属于集合S。小C用这个生成器生成了许多这样的数列。但是小C有一个问题需要你的帮助:给定整数x,求所有可以生成出的,且满足数列中所有数的乘积mod M的值等于x的不同的数列的有多少个。小C认为,两个数列{Ai}和{Bi}不同,当且仅当至少存在一个整数i,满足Ai≠Bi。另外,小C认为这个问题的答案可能很大,因此他只需要你帮助他求出答案mod 1004535809的值就可以了。

题解

先考虑一个dp,就是设dp[i][j]表示已经构造好了前i个元素,它们的乘积为j的方案数。

转移:dp[i][j]=dp[i-1][k]*f[j/k] 

看起来很像是卷积然鹅不是,他们中间是乘法关系而不是加法。

这时我们考虑一个限制,就是m是一个质数。

它有什么好处,就是当x,y互质时,那么x1x2....xy-1会遍历0-y-1的所有数。、

这样我们可以把1-m-1代换一下。

dp[i][j]=dp[i-1][k]*f[l] (gkgl=gj)

因为存在一一对应的关系,所以我们就可以代换了。

然后就变成了卷积的形式,多项式快速幂解决,因为每层的转移都是一样的。

代码

#include<iostream>
#include<cstdio>
#include<cstring>
#define N 32002
using namespace std;
typedef long long ll;
const int mod=;
const int G=;
const int Gi=;
ll l,ny2,x,rev[N],L,n,m,a[N],b[N],s,g,c[N],tran[N],f[N];
inline int rd(){
int x=;char c=getchar();bool f=;
while(!isdigit(c)){if(c=='-')f=;c=getchar();}
while(isdigit(c)){x=(x<<)+(x<<)+(c^);c=getchar();}
return f?-x:x;
}
inline ll power(ll x,ll y){
ll ans=;
while(y){if(y&)ans=ans*x%mod;x=x*x%mod;y>>=;}
return ans;
}
inline void NTT(ll *a,int tag){
for(int i=;i<l;++i)if(i>rev[i])swap(a[i],a[rev[i]]);
for(int i=;i<l;i<<=){
ll wn=power(tag==?G:Gi,(mod-)/(i<<));
for(int j=;j<l;j+=(i<<)){
ll w=;
for(int k=;k<i;++k,w=w*wn%mod){
int x=a[j+k],y=a[i+j+k]*w%mod;
a[j+k]=(x+y)%mod;a[i+j+k]=(x-y+mod)%mod;
}
}
}
}
inline void ch(ll a[],ll *b){
memcpy(c,a,sizeof(c));
NTT(c,);NTT(b,);
for(int i=;i<l;++i)b[i]=b[i]*c[i]%mod;
NTT(b,-);
for(int i=;i<l;++i)b[i]=b[i]*ny2%mod;
for(int i=m;i<(m<<);++i)(b[i-m]+=b[i])%=mod,b[i]=;
}
inline ll ksm(ll x,ll y,ll m){
ll ans=;
while(y){if(y&)ans=ans*x%m;x=x*x%m;y>>=;}
return ans;
}
inline int get_g(int m){
for(int i=;i<=m-;++i)if((m-)%i==)f[++f[]]=i;
for(int i=;;++i){
bool x=;
for(int j=;j<=f[]&&x;++j)if(ksm(i,f[j],m)==)x=;
if(x)return i;
}
}
int main(){
n=rd();m=rd();x=rd();s=rd();
g=get_g(m);
for(ll i=,k=;i<m-;++i,k=k*g%m)tran[k]=i;
m--;
l=;L=;
while(l<(m<<))l<<=,L++;int y;
ny2=power(l,mod-);
for(int i=;i<l;++i)rev[i]=(rev[i>>]>>)|((i&)<<(L-));
for(int i=;i<=s;++i){
y=rd();
if(y)a[tran[y]]=;
}
b[tran[]]=;
while(n){
if(n&)ch(a,b);
ch(a,a);n>>=;
}
cout<<b[tran[x]];
return ;
}

原根的求法:

暴力枚举,然后枚举m-1的所有质因子,若i^p==1则不是原根。

inline int get_g(int m){
for(int i=;i<=m-;++i)if((m-)%i==)f[++f[]]=i;
for(int i=;;++i){
bool x=;
for(int j=;j<=f[]&&x;++j)if(ksm(i,f[j],m)==)x=;
if(x)return i;
}
}