H-Index,H-Index II

时间:2024-11-15 23:04:25
1.H-Index
Total Accepted: 19058 Total Submissions: 70245 Difficulty: Medium

Given an array of citations (each citation is a non-negative integer) of a researcher, write a function to compute the researcher's h-index.

According to the definition of h-index on Wikipedia: "A scientist has index h if h of his/her N papers have at least h citations each, and the other N − h papers have no more than h citations each."

For example, given citations = [3, 0, 6, 1, 5], which means the researcher has 5 papers in total and each of them had received 3, 0, 6, 1, 5 citations respectively. Since the researcher has 3 papers with at least 3 citations each and the remaining two with no more than 3 citations each, his h-index is 3.

Note: If there are several possible values for h, the maximum one is taken as the h-index.

1.如果有序,题目的意思是, 
h = n-i;
citations[i] >= h 就符合要求
/*
0 1 4 5 6 7 9
*/ class Solution {
public:
int hIndex(vector<int>& citations) {
int n = citations.size();
sort(citations.begin(),citations.end()) ;
for(int i=;i<n;i++){
if(citations[i] >= n-i) return n-i;
}
return ;
}
};

2.也可使用二分的思路来做,因为我们知道h的范围是[0,h],而且每一个h都有固定的规则,那么就可以用二分来逼近答案

low=,high=n+;

while(low<high)
{
h=low+(high-low)/;
统计citation>h的数量为y
如果有y=10篇大于等于h=citaton=8的文章,说明h不符合要求,也就是说我们选的citation太小了,我们把citation上移一个,即low=mid+;
如果有y=4篇大于等于h=ciation=8的文章,转换一下就是所,有4篇papers的cication>=,也就是我们选的citation太大了,把citation下移一个,high = mid-;
如果相等,那么找到了
}
return low-
class Solution {
public:
int hIndex(vector<int>& citations) {
int n = citations.size();
if(n==){
return ;
}
int low = ;
int high= n+;
while(low<high){
int h = low+(high-low)/;
int y = ;
for(int i=;i<n;i++){
if(citations[i] >= h) y++;
}
if(y == h){
return h;
}else if(y<h){
high = h;
}else{
low = h+;
}
}
return low-;
}
};

 2.H-Index II

Total Accepted: 13860 Total Submissions: 43755 Difficulty: Medium

Follow up for H-Index: What if the citations array is sorted in ascending order? Could you optimize your algorithm?

class Solution {
public:
int hIndex(vector<int>& citations) {
int n = citations.size();
int low_index = ;
int high_index= n-;
while(low_index<=high_index){
int y = low_index+(high_index-low_index)/;
int h = n-y;
if(citations[y] == h){
return h;
}else if(citations[y] < h){
low_index = y+;
}else{
high_index = y-;
}
}
return n== ? : n-low_index;
}
};