Given an array of integers and a number k, find k non-overlapping subarrays which have the largest sum. The number in each subarray should be contiguous. Return the largest sum. Note
The subarray should contain at least one number Example
Given [-1,4,-2,3,-2,3],k=2, return 8 Tags Expand
DP. d[i][j] means the maximum sum we can get by selecting j subarrays from the first i elements.
d[i][j] = max{d[p][j-1]+maxSubArrayindexrange(p,i-1)}, with p in the range j-1<=p<=i-1
public class Solution {
/**
* @param nums: A list of integers
* @param k: An integer denote to find k non-overlapping subarrays
* @return: An integer denote the sum of max k non-overlapping subarrays
*/
public int maxSubArray(ArrayList<Integer> nums, int k) {
// write your code
if (nums.size() < k) return 0;
int len = nums.size(); int[][] dp = new int[len+1][k+1]; for (int i=1; i<=len; i++) {
for (int j=1; j<=k; j++) {
if (i < j) {
dp[i][j] = 0;
continue;
}
dp[i][j] = Integer.MIN_VALUE;
for (int p=j-1; p<=i-1; p++) {
int local = nums.get(p);
int global = local;
for (int t=p+1; t<=i-1; t++) {
local = Math.max(local+nums.get(t), nums.get(t));
global = Math.max(local, global);
}
if (dp[i][j] < dp[p][j-1]+global) {
dp[i][j] = dp[p][j-1]+global;
}
}
}
}
return dp[len][k];
}
}
别人一个类似的方法,比我少一个loop,暂时没懂:
public class Solution {
/**
* @param nums: A list of integers
* @param k: An integer denote to find k non-overlapping subarrays
* @return: An integer denote the sum of max k non-overlapping subarrays
*/
public int maxSubArray(ArrayList<Integer> nums, int k) {
if (nums.size()<k) return 0;
int len = nums.size();
//d[i][j]: select j subarrays from the first i elements, the max sum we can get.
int[][] d = new int[len+1][k+1];
for (int i=0;i<=len;i++) d[i][0] = 0; for (int j=1;j<=k;j++)
for (int i=j;i<=len;i++){
d[i][j] = Integer.MIN_VALUE;
//Initial value of endMax and max should be taken care very very carefully.
int endMax = 0;
int max = Integer.MIN_VALUE;
for (int p=i-1;p>=j-1;p--){
endMax = Math.max(nums.get(p), endMax+nums.get(p));
max = Math.max(endMax,max);
if (d[i][j]<d[p][j-1]+max)
d[i][j] = d[p][j-1]+max;
}
} return d[len][k]; }
}