iven an integer array nums
, find the contiguous subarray (containing at least one number) which has the largest sum and return its sum.
Example:
Input: [-2,1,-3,4,-1,2,1,-5,4],
Output: 6
Explanation: [4,-1,2,1] has the largest sum = 6.
Follow up:
If you have figured out the O(n) solution, try coding another solution using the divide and conquer approach, which is more subtle.
法I: 动态规划法
class Solution {
public int maxSubArray(int[] nums) {
int maxSum = Integer.MIN_VALUE; //注意有负数的时候,不能初始化为0
int currentSum = Integer.MIN_VALUE;
for(int i = 0; i < nums.length; i++){
if(currentSum < 0) currentSum = nums[i];
else currentSum += nums[i]; if(currentSum > maxSum) maxSum = currentSum;
}
return maxSum;
}
}
法II:分治法
class Solution {
public int maxSubArray(int[] nums) {
return partialMax(nums,0,nums.length-1);
} public int partialMax(int[] nums, int start, int end){
if(start == end) return nums[start]; int mid = start + ((end-start) >> 1);
int leftMax = partialMax(nums,start, mid);
int rightMax = partialMax(nums,mid+1,end);
int maxSum = Math.max(leftMax,rightMax); int lMidMax = Integer.MIN_VALUE;
int rMidMax = Integer.MIN_VALUE;
int current = 0;
for(int i = mid; i >= start; i--){
current += nums[i];
if(current > lMidMax) lMidMax = current;
}
current = 0;
for(int i = mid+1; i <= end; i++){
current += nums[i];
if(current > rMidMax) rMidMax = current;
}
if(lMidMax > 0 && rMidMax > 0) maxSum = Math.max(lMidMax + rMidMax,maxSum);
else if(lMidMax > rMidMax) maxSum = Math.max(lMidMax,maxSum);
else maxSum = Math.max(rMidMax,maxSum);
return maxSum;
}
}