Strassen 矩阵相乘算法(转)

时间:2023-03-08 17:06:20

偶尔在算法课本上面看到矩阵相乘的算法,联想到自己曾经在蓝桥杯系统上曾经做过一道矩阵相乘的题目,当时用的是普通的矩阵相乘的方法,效率极低,勉强通过编译。所以决定研究一下Strassen矩阵相乘算法,由于本人比较懒,所以就从网上找了一些相关的资料供大家参考;

下面内容均转自 https://i.cnblogs.com/EditPosts.aspx?opt=1 ,如需转载请注明出处,https://www.cnblogs.com/zhuchenglin/p/6555495.html

题目描述

请编程实现矩阵乘法,并考虑当矩阵规模较大时的优化方法。

思路分析

根据wikipedia上的介绍:两个矩阵的乘法仅当第一个矩阵B的列数和另一个矩阵A的行数相等时才能定义。如A是m×n矩阵和B是n×p矩阵,它们的乘积AB是一个m×p矩阵,它的一个元素其中 1 ≤ i ≤ m, 1 ≤ j ≤ p。

Strassen 矩阵相乘算法(转)

值得一提的是,矩阵乘法满足结合律和分配率,但并不满足交换律,如下图所示的这个例子,两个矩阵交换相乘后,结果变了:

Strassen 矩阵相乘算法(转)

下面咱们来具体解决这个矩阵相乘的问题。

解法一、暴力解法

其实,通过前面的分析,我们已经很明显的看出,两个具有相同维数的矩阵相乘,其复杂度为O(n^3),参考代码如下:

  1. //矩阵乘法,3个for循环搞定
  2. void Mul(int** matrixA, int** matrixB, int** matrixC)
  3. {
  4. for(int i = 0; i < 2; ++i)
  5. {
  6. for(int j = 0; j < 2; ++j)
  7. {
  8. matrixC[i][j] = 0;
  9. for(int k = 0; k < 2; ++k)
  10. {
  11. matrixC[i][j] += matrixA[i][k] * matrixB[k][j];
  12. }
  13. }
  14. }
  15. }

解法二、Strassen算法

在解法一中,我们用了3个for循环搞定矩阵乘法,但当两个矩阵的维度变得很大时,O(n^3)的时间复杂度将会变得很大,于是,我们需要找到一种更优的解法。

一般说来,当数据量一大时,我们往往会把大的数据分割成小的数据,各个分别处理。遵此思路,如果丢给我们一个很大的两个矩阵呢,是否可以考虑分治的方法循序渐进处理各个小矩阵的相乘,因为我们知道一个矩阵是可以分成更多小的矩阵的。

如下图,当给定一个两个二维矩阵A B时:

Strassen 矩阵相乘算法(转)

这两个矩阵A B相乘时,我们发现在相乘的过程中,有8次乘法运算,4次加法运算:

Strassen 矩阵相乘算法(转)

矩阵乘法的复杂度主要就是体现在相乘上,而多一两次的加法并不会让复杂度上升太多。故此,我们思考,是否可以让矩阵乘法的运算过程中乘法的运算次数减少,从而达到降低矩阵乘法的复杂度呢?答案是肯定的。

1969年,德国的一位数学家Strassen证明O(N^3)的解法并不是矩阵乘法的最优算法,他做了一系列工作使得最终的时间复杂度降低到了O(n^2.80)。

他是怎么做到的呢?还是用上文A B两个矩阵相乘的例子,他定义了7个变量:

Strassen 矩阵相乘算法(转)

如此,Strassen算法的流程如下:

  • 两个矩阵A B相乘时,将A, B, C分成相等大小的方块矩阵:

Strassen 矩阵相乘算法(转)

  • 可以看出C是这么得来的:

Strassen 矩阵相乘算法(转)

  • 现在定义7个新矩阵(读者可以思考下,这7个新矩阵是如何想到的):

Strassen 矩阵相乘算法(转)

  • 而最后的结果矩阵C 可以通过组合上述7个新矩阵得到:
Strassen 矩阵相乘算法(转)

表面上看,Strassen算法仅仅比通用矩阵相乘算法好一点,因为通用矩阵相乘算法时间复杂度是Strassen 矩阵相乘算法(转),而Strassen算法复杂度只是Strassen 矩阵相乘算法(转)。但随着n的变大,比如当n >> 100时,Strassen算法是比通用矩阵相乘算法变得更有效率。

具体实现的伪代码如下:

Strassen (N,MatrixA,MatrixB,MatrixResult)

    //splitting input Matrixes, into 4 submatrices each.
for i <- 0 to N/2
for j <- 0 to N/2
A11[i][j] <- MatrixA[i][j]; //a矩阵块
A12[i][j] <- MatrixA[i][j + N / 2]; //b矩阵块
A21[i][j] <- MatrixA[i + N / 2][j]; //c矩阵块
A22[i][j] <- MatrixA[i + N / 2][j + N / 2];//d矩阵块 B11[i][j] <- MatrixB[i][j]; //e 矩阵块
B12[i][j] <- MatrixB[i][j + N / 2]; //f 矩阵块
B21[i][j] <- MatrixB[i + N / 2][j]; //g 矩阵块
B22[i][j] <- MatrixB[i + N / 2][j + N / 2]; //h矩阵块
//here we calculate M1..M7 matrices .
//递归求M1
HalfSize <- N/2
AResult <- A11+A22
BResult <- B11+B22
Strassen( HalfSize, AResult, BResult, M1 ); //M1=(A11+A22)*(B11+B22) p5=(a+d)*(e+h)
//递归求M2
AResult <- A21+A22
Strassen(HalfSize, AResult, B11, M2); //M2=(A21+A22)B11 p3=(c+d)*e
//递归求M3
BResult <- B12 - B22
Strassen(HalfSize, A11, BResult, M3); //M3=A11(B12-B22) p1=a*(f-h)
//递归求M4
BResult <- B21 - B11
Strassen(HalfSize, A22, BResult, M4); //M4=A22(B21-B11) p4=d*(g-e)
//递归求M5
AResult <- A11+A12
Strassen(HalfSize, AResult, B22, M5); //M5=(A11+A12)B22 p2=(a+b)*h
//递归求M6
AResult <- A21-A11
BResult <- B11+B12
Strassen( HalfSize, AResult, BResult, M6); //M6=(A21-A11)(B11+B12) p7=(c-a)(e+f)
//递归求M7
AResult <- A12-A22
BResult <- B21+B22
Strassen(HalfSize, AResult, BResult, M7); //M7=(A12-A22)(B21+B22) p6=(b-d)*(g+h) //计算结果子矩阵
C11 <- M1 + M4 - M5 + M7; C12 <- M3 + M5; C21 <- M2 + M4; C22 <- M1 + M3 - M2 + M6;
//at this point , we have calculated the c11..c22 matrices, and now we are going to
//put them together and make a unit matrix which would describe our resulting Matrix.
for i <- 0 to N/2
for j <- 0 to N/2
MatrixResult[i][j] <- C11[i][j];
MatrixResult[i][j + N / 2] <- C12[i][j];
MatrixResult[i + N / 2][j] <- C21[i][j];
MatrixResult[i + N / 2][j + N / 2] <- C22[i][j];