CUDA5.5与VS2010的编译环境搭建

时间:2021-07-26 18:57:04

目前版本的cuda是很方便的,它的一个安装里面包括了Toolkit`SDK`document`Nsight等等,而不用你自己去挨个安装,这样也避免了版本的不同步问题。

1 cuda5.5的下载地址,官方网站即可:

     https://developer.nvidia.com/cuda-downloads   在里面选择你所对应的电脑版本即可。

2 VS2010这个没什么说的了,网上各种的免费资源,下载一个不需要钱的就行。

3 Cuda的安装:(win7版32bit)


 

  3.1 cuda的安装文件

  CUDA5.5与VS2010的编译环境搭建

  直接双击exe文件,弹出后,首先会监测一下你的运行环境,如果找不到Nividia对应的显卡设备,他会提示你是否要继续安装。这里面nvidia的显卡,最起码也是8800以上的,要不是无法编写CUDA的。千万不要电脑上面是intel或者AMD的显卡,却要编写cuda,除非你有钱买一个cuda-x86这个编译器。

  3.2 弹出的对话框直接OK就行,这个是CUDA的一些安装文件,无所谓的:

CUDA5.5与VS2010的编译环境搭建

 

  3.3 他会监测你的电脑是否支持cuda的搭建,等待就行

CUDA5.5与VS2010的编译环境搭建

  3.4 系统检查

CUDA5.5与VS2010的编译环境搭建

  3.5 选择同意并继续

CUDA5.5与VS2010的编译环境搭建

  3.6 推荐先选择自定义安装

CUDA5.5与VS2010的编译环境搭建

  3.7 最主要的是cuda document\cuda Toolkit \cuda samples(SDK),Nsight\图形驱动程序,3D如果需要的话安装,不安装也无所谓。这里主要就是能看见都有什么,免得漏掉了,博主当初就因为选了精简安装,没安装上SDK。

  CUDA5.5与VS2010的编译环境搭建

  3.7 安装的位置,推荐自己建三个好找的文件夹,不用他默认的路径,免得稍后配置环境变量麻烦。

CUDA5.5与VS2010的编译环境搭建

博主的安装路径为:

CUDA5.5与VS2010的编译环境搭建

  3.8 下一步安装就行了。

至此,cuda的安装就搞定了。


 

4 接下来配置cuda的环境变量,默认安装好后,他会自动帮你设置好2个环境变量,但是最好还自己添加下其他的几个,方便日后配置vs使用

CUDA5.5与VS2010的编译环境搭建

 

上面的两个环境变量是cuda默认配置的,接下来添加

CUDA_BIN_PATH  %CUDA_PATH%\bin

CUDA_LIB_PATH  %CUDA_PATH%\lib\Win32

CUDA_SDK_BIN  %CUDA_SDK_PATH%\bin\Win32

CUDA_SDK_LIB  %CUDA_SDK_PATH%\common\lib\Win32

CUDA_SDK_PATH  C:\cuda\cudasdk\common

 

添加完就行了

 


 

5 接下来是cuda的安装成功与否的监测了,这个步骤我们用到两个东西,这两个东西,都是cuda为我们准备好的。

deviceQuery.exe 和 bandwithTest.exe

  首先启动cmd DOS命令窗口(博主的cuda安装到c:\cuda文件夹下)

  默认进来的是c:\users\Admistrator\>路径,输入 cd .. 两次,来到c:目录下

  输入dir 找到安装的cuda文件夹

CUDA5.5与VS2010的编译环境搭建

进入Release文件夹后,直接执行bandwithTest.exe

CUDA5.5与VS2010的编译环境搭建

再执行deviceQuery.exe

CUDA5.5与VS2010的编译环境搭建

CUDA5.5与VS2010的编译环境搭建

得到以上信息,因为我的显卡比较古老9300属于第一代的cuda显卡了。Rsult=PASS及说明,都通过了。如果Rsult=Fail 那不好意思,重新安装吧(或者是您的显卡真心不给力)。


 

5 最后就是VS的配置了

  5.1 启动VS2010

  5.2 新建一个win32的控制台工程,空的。

CUDA5.5与VS2010的编译环境搭建

CUDA5.5与VS2010的编译环境搭建

  5.3 右键源文件文件夹->新建项->选择cuda c/c++->新建一个以.cu结尾的文件

CUDA5.5与VS2010的编译环境搭建

  5.4 右键工程-》生成自定义-》选择cuda生成

CUDA5.5与VS2010的编译环境搭建

  5.5 右键test.cu-》属性-》选择cuda c/c++编译器

CUDA5.5与VS2010的编译环境搭建

  5.6 右键工程-》属性-》链接器-》常规-》附加库目录-》添加目录 $(CUDA_PATH_V5_5)\lib\$(Platform);

CUDA5.5与VS2010的编译环境搭建

  5.7 在链接器-》输入中添加 cudart.lib

CUDA5.5与VS2010的编译环境搭建

 

  5.8 在工具-》选项-》文本编辑器-》文件扩展名-》添加cu \cuh两个文件扩展名

CUDA5.5与VS2010的编译环境搭建

 

至此,编译环境的相关搭建就完成了。

 


 

 

下面提供了一段test.cu的代码,供测试使用:

 1 #include <stdio.h> 2 #include <stdlib.h> 3 #include <cuda_runtime.h>  4  5 #define DATA_SIZE 1024 6 #define checkCudaErrors(err)  __checkCudaErrors (err, __FILE__, __LINE__) 7 #define getLastCudaError(msg)  __getLastCudaError (msg, __FILE__, __LINE__) 8  9 int data[DATA_SIZE];10 11 ////////////////////////////////////////////////////////////////////////////////12 // These are CUDA Helper functions13 14 // This will output the proper CUDA error strings in the event that a CUDA host call returns an error15 16 17 inline void __checkCudaErrors(cudaError err, const char *file, const int line )18 {19     if(cudaSuccess != err)20     {21         fprintf(stderr, "%s(%i) : CUDA Runtime API error %d: %s.\n",file, line, (int)err, cudaGetErrorString( err ) );22         return ;        23     }24 }25 26 // This will output the proper error string when calling cudaGetLastError27 28 29 inline void __getLastCudaError(const char *errorMessage, const char *file, const int line )30 {31     cudaError_t err = cudaGetLastError();32     if (cudaSuccess != err)33     {34         fprintf(stderr, "%s(%i) : getLastCudaError() CUDA error : %s : (%d) %s.\n",35         file, line, errorMessage, (int)err, cudaGetErrorString( err ) );36         return ;37     }38 }39 40 // end of CUDA Helper Functions41 42 __global__ static void sumOfSquares(int *num, int * result){43     int sum=0;44     int i;45     for(i=0;i<DATA_SIZE;i++) {46         sum += num[i]*num[i];47         }48     *result = sum;49 }50 void GenerateNumbers(int *number, int size){51     for(int i = 0; i < size; i++) {52         number[i] = rand() % 10;53         printf("number[%d] is %d\n",i,number[i]);54     }}55     56 int main(){57 58         cudaSetDevice(0);59         cudaDeviceSynchronize();60         cudaThreadSynchronize();61 62         GenerateNumbers(data, DATA_SIZE);63 64         int * gpudata, * result;65         int sum;66 67         checkCudaErrors( cudaMalloc((void**) &gpudata, sizeof(int)*DATA_SIZE));68         checkCudaErrors(cudaMalloc((void**) &result, sizeof(int)));69         checkCudaErrors(cudaMemcpy(gpudata, data, sizeof(int)*DATA_SIZE,cudaMemcpyHostToDevice));70 71         sumOfSquares<<<1, 1, 0>>>(gpudata, result);72 73         checkCudaErrors(cudaMemcpy(&sum, result, sizeof(int), cudaMemcpyDeviceToHost));74 75         cudaFree(gpudata);76         cudaFree(result);77 78         printf("-----------sum: %d\n",sum);79 80         sum = 0;81         for(int i = 0; i < DATA_SIZE; i++) {82             sum += data[i] * data[i];83         }84         printf("sum (CPU): %d\n", sum);85 86         getchar();87         return 0;88 }

 http://www.cnblogs.com/xing901022/p/3248469.html