数据清洗的常用工具--Pandas
- 现实中,数据并非完美的,需要进行清洗才能进行后面的数据分析
- 数据清洗是整个数据分析项目中最消耗时间的一步
- 数据的质量最终决定了数据分析的准确性
- 数据清洗是唯一可以提高数据质量的方法,使得数据分析结果也变得更可靠
数据清洗的常用工具
- 目前在Python中,numpy和pandas是最主流的工具
- Numpy中的向量化运算使得数据处理变得高效
- Pandas提供了大量数据清洗的高效方法
- 在Python中,尽可能多的使用numpy和pandas中的函数,提高数据清洗的效率
Pandas常用数据结构series和方法
- 通过pandas.Series来创建Series数据结构
- pandas.Series(data,index,dtype,name)
上述参数:data可以为列表,array/dict
-
上述参数:index表示索引,必须与数据同长度,name表示对象名称
import pandas as pd
import numpy as np series1 = pd.Series([2.8, 3.01, 8.99, 8.59, 5.18])
series2 = pd.Series([2.8, 3.01, 8.99, 8.59, 5.18], index=['a', 'b', 'c', 'd', 'e'], name='这是一个series')
series3 = pd.Series(np.array((2.8, 3.10, 8.99, 8.59, 5.18)), index=['a', 'b', 'c', 'd', 'e'])
series4 = pd.Series({'北京': 2.8, '上海': 3.01, '广东': 8.99, '江苏': 8.59, '浙江': 5.18}) print(series1)
"""
0 2.80
1 3.01
2 8.99
3 8.59
4 5.18
dtype: float64
""" print(series2)
"""
a 2.80
b 3.01
c 8.99
d 8.59
e 5.18
Name: 这是一个series, dtype: float64
"""
print(series3)
"""
a 2.80
b 3.10
c 8.99
d 8.59
e 5.18
dtype: float64
""" print(series4)
"""
北京 2.80
上海 3.01
广东 8.99
江苏 8.59
浙江 5.18
dtype: float64
"""
Pandas常用数据结构dataframe和方法
通过pandas.DataFrame来创建DataFrame数据结构
Pandas.DataFrame(data,index,dtype,columns)
上述参数:data可以作为 array/dict
-
上述参数:index为 行 索引,columns代表列名或者列标签
import pandas as pd
import numpy as np list1 = [['张三', 23, '男'], ['李四', 27, '女'], ['王二', 26, '女']] # 使用嵌套列表
df1 = pd.DataFrame(list1, columns=['姓名', '年龄', '性别'])
df2 = pd.DataFrame({'姓名': ['张三', '李四', '王二'], '年龄': [23, 27, 26], '性别': ['男', '女', '女']})
array1 = np.array([['张三', 23, '男'], ['李四', 27, '女'], ['王二', 26, '女']]) # 使用numpy
df3 = pd.DataFrame(array1, columns=['姓名', '年龄', '性别'], index=['a', 'b', 'c']) print(df1)
"""
姓名 年龄 性别
0 张三 23 男
1 李四 27 女
2 王二 26 女
""" print(df2)
"""
姓名 年龄 性别
0 张三 23 男
1 李四 27 女
2 王二 26 女
""" print(array1)
"""
[['张三' '23' '男']
['李四' '27' '女']
['王二' '26' '女']]
""" print(df3)
"""
姓名 年龄 性别
a 张三 23 男
b 李四 27 女
c 王二 26 女
"""
常用方法
- series和dataframe常用方法
方法名称 | 说明 |
---|---|
values | 返回对象所有元素的值 |
index | 返回行索引 |
dtypes | 返回索引 |
shape | 返回对象数据形状 |
ndim | 返回对象的维度 |
size | 返回对象的个数 |
columns | 返回列标签(只对dataframe数据结构) |
pyinstaller -F -w demo.py --noconsole