import re
import pandas as pd
import time
class jk_jd():
# 方法1:传统for循环
def solution(self,data):
col = ['x','y'] # 定义要筛选的列
data_del = (data,columns=col) # 提取出要筛选的列,装到dataframe中
for i in range(len(data_del['x'])): # 遍历dataFrame中的每一行,进行正则表达式的匹配处理
data_del['x'][i] = ("<br>(.*)", "", data_del['x'][i]) # 删掉<br>后面的所有数据
data_del['x'][i] = ("【(.*?)】","",data_del['x'][i]) # 删掉【】中的所有数据
data_del.to_csv("") # 导出为CSV文件
# 方法2:pandas的map模块方式
def solution1(self,data):
col = ['x','y']
data_dele = (data,columns=col)
data_dele['x'] = data_dele['x'].map(lambda x:("<br>(.*)", "",("【(.*?)】","",x))\
.replace('\t','').replace('\n','').replace(' ',''))
data_dele.to_csv("")
if __name__ == '__main__':
data = pd.read_excel('')
s = jk_jd()
t1 = ()
data_dele = (data)
print('for循环需要时间: ',()-t1)
t2 = ()
data_dele1 = s.solution1(data)
print('map需要时间: ',()-t2)