1.什么是线程池
- 定义:线程池是指管理一组同构工作线程的资源池
- 组成部分:
- 线程管理器(ThreadPool):用于创建并管理线程池。包括创建线程池,销毁线程池,添加新任务
- 工作线程(PoolWorker):线程池中的线程
- 任务接口(Task):每个任务必须实现的接口,一共工作线程调度任务的执行
- 任务队列:用于存放没有处理的任务,提供一种缓冲机制
2.为什么要使用线程池
- 通过重用现有的线程而不是创建新线程,从而减少了线程创建 和 销毁过程中的巨大开销
- 当请求到达时,工作线程已经存在,不用再等待线程的创建,从而提高了响应性
- 可以是处理器保持忙碌状态,提高系统的吞吐量
3.什么时候使用线程池
当一个服务器完成一项任务所需时间为:T1 创建线程的时间,T2 在线程中执行任务的时间,T3 销毁线程时间。若 T1+T3 > T2 时,则一般可以采用线程池。
4.如何使用线程池
- 线程池的类图
- 其中,Executor 接口中只有一个execute方法
- ExecutorService 接口继承于 Executor接口,它提供了如下方法:
shutdown();
shutdownNow();
submit();
invokeAll();
invokeAny();
- AbstractExecutorService 抽象类,实现了 ExecutorService 中的部分方法
- ThreadPoolExecutor 类,实现了其上级的所有未实现的方法,还提供许多其他方法。其中,由它实现的父级方法有如下:
execute();
shutdown();
shutdownNow();
isTerminated();
- 其中,需要说明的是 submit 与 execute 方法 区别,submit 方法是在 ExecutorService 中声明的方法,在AbstractExecutorService中的具体实现,而 execute 方法是在 Executor 中声明的方法,在 ThreadPoolExecutor 进行了具体的实现。它们都是向线程池中提交任务,但是不同的是 submit 方法 会返回任务的执行结果,但实际上,它还是调用的 execute方法,只不过它利用了Future来获取任务的执行结果。
- shutdown 方法与 shutdownNow 方法的区别在于:shutdown方法将平缓的关闭过程,它不会再接受新的任务,通知等待已提交的任务执行完成,包括那些还未完成的任务。 而shutdownNow 方法,将取消所有运行中的任务,返回还未开始的任务,但不不会返回正在执行的任务
- 创建线程池
- 通过调用 Execotors 中的静态工厂方法
- newFixedThreadPool:创建一个固定长度的线程池,每当提交一个任务时就创建一个线程,知道达到线程池的最大数量
- newCachedThreadPool:创建一个可缓存的线程池,线程池的规模不存在任何限制。有多少任务就会有多少线程。当超过了处理需求时,会回收空闲的线程
- newSingleThreadExecutor:创建一个单线程的 Executor,依照任务在队列中的顺序来串行执行,安全的封闭在线程中阿
- newScheduledThreadPool: 创建一个固定长度的线程池,而且一延迟或定时的方式来执行任务
- 通过 ThreadPoolExecutor 的构造方法进行创建
public ThreadPoolExecutor(int corePoolSize,int maximumPoolSize,long keepAliveTime, TimeUnit unit, BlockingQueue<Runnable> workQueue,ThreadFactory threadFactory,RejectedExecutionHandler handler)
- corePoolSize:线程池的大小,当创建了线程池后,线程池中没有任何线程,而是等待任务的到来才会创建线程去执行任务。当线程数达到了corePoolSize时,就会把到达的任务放在缓存队列当中
- maximumPoolSize:线程池中的最大线程数
- keepAliveTime: 表示线程没有任务执行时最多保持多久时间会终止。默认情况下,只有当线程池中的线程数大于corePoolSize时,keepAliveTime才会起作用,直到线程池中的线程数不大于corePoolSize,即当线程池中的线程数大于corePoolSize时,如果一个线程空闲的时间达到keepAliveTime,则会终止,直到线程池中的线程数不超过corePoolSize。但是如果调用了allowCoreThreadTimeOut(boolean)方法,在线程池中的线程数不大于corePoolSize时,keepAliveTime参数也会起作用,直到线程池中的线程数为0;
- unit : 参数 keepAliveTime 的时间单位
- workQueue : 用来存储等待执行的任务
*队列:LinkedBlockingQueue-可无限制的增加,它是 newFixedThreadPool 和 newSingleThreadExecutor 默认的任务队列
有界队列:ArrayBlockingQueue、有界的 LinkedBlockingQueue、PriorityBlockingQueue-当队列满后,会执行饱和策略
同步移交:在线程之间移交的一种机制,当线程池是*的或者是可以拒绝任务的就可以使用,newCachedThreadPool就使用的是 SynchronousQueue
- threadFactory:线程工厂,主要用来创建线程,可以自定义线程工厂(实现 ThreadFactory接口),可以定制一些行为:如统计信息以及线程被创建或者终止时把调试消息写入日志
- handler : 饱和策略— 当任务队列被填满后,会执行的策略。有如下:
ThredPoolExecutor 类中的4个静态内部类:
AbortPolicy: 默认的 Handler,该策略会抛出 未检查的 RegectedExecutionException
CallerRunsPolicy:调用者运行,将某些任务回退到调用者(一般为主线程),由于执行任务需要一定的时间,因此主线程至少在一段时间内不能提交任何任务,从而使得工作者线程有时间来处理正在执行的任务
DiscardPolicy:抛弃新提交的任务
DiscardOldestPolicy:将抛弃下一个将要执行的任务
- 通过调用 Execotors 中的静态工厂方法
- 关于线程池的执行过程
- 从execute 方法为 入口点
/**
1.当线程池中的数目小于 corePoolSize时,直接new 一个 Thread
2.当线程池数大于corePoolSize 时,直接放入 任务队列中
3.如果队列已经满了且线程池中线程数小于 maximumPoolSize,则新建一个线程
*/
public void execute(Runnable command) {
if (command == null)
throw new NullPointerException();
int c = ctl.get();
//如果正在运行的线程数小于线程池预设的大小,就尝试addWorker(源码在其后)。若成功,直接返回。若添加失败(可能在添加过程中已达到预设的线程池的数目),重新获取线程池正在运行的线程数
if (workerCountOf(c) < corePoolSize) {
if (addWorker(command, true))
return;
c = ctl.get();
}
//若任务没有线程处理(当达到了线程池的预设大小 corePoolSize),就添加到任务队列。
if (isRunning(c) && workQueue.offer(command)) {
int recheck = ctl.get();
if (! isRunning(recheck) && remove(command)) //若线程池在workeQueue.offer前发生了shutdown,就从任务队列中移除
reject(command);
else if (workerCountOf(recheck) == 0) //如果线程池在运行,并且没有可工作的线程,就直接创建一个
addWorker(null, false);
}
else if (!addWorker(command, false)) // 如果任务队列已满,尝试创建一个新的Worker,若失败,说明线程池已经关闭 或者 饱和了
reject(command); //饱和策略问题
}
- 从execute 方法为 入口点
/**
@param firstTask : 是新线程应该运行的第一个任务,Worker 会被创建 在线程池的数目 比 corePoolSize 小的时候,或者在任务队列已经满的情况下,创建一个线程来代替已死的线程
@param core : 当为true时,用 corePoolSize作为边界,否则,用 maximumPoolSize 作为边界
*/
private boolean addWorker(Runnable firstTask, boolean core) {
retry:
for (;;) {
int c = ctl.get();
int rs = runStateOf(c); //获取线程池的状态
// 如果线程池被 shutdown了,一般直接返回false。但是排除 任务队列不为空 但 Workers 为空的情况,在这种情况下,会调用 addWorker(null,false) 来创建一个线程处理队列中的任务
if (rs >= SHUTDOWN &&
! (rs == SHUTDOWN &&
firstTask == null &&
! workQueue.isEmpty()))
return false;
for (;;) {//如果正在执行的线程数目大于 线程池中预设的线程数,返回false
int wc = workerCountOf(c);
if (wc >= CAPACITY || wc >= (core ? corePoolSize : maximumPoolSize))
return false;
if (compareAndIncrementWorkerCount(c))
break retry;
c = ctl.get(); // Re-read ctl
if (runStateOf(c) != rs)
continue retry;
// else CAS failed due to workerCount change; retry inner loop
}
}
boolean workerStarted = false;
boolean workerAdded = false;
Worker w = null;
try {
final ReentrantLock mainLock = this.mainLock;
w = new Worker(firstTask);//创建 Worker:其中Thread通过调用ThreadFactory 的 newThread 方法构建,所以在此处可以对创建的Thread进行额外的处理
final Thread t = w.thread;
if (t != null) {
mainLock.lock();
try {
int c = ctl.get();
int rs = runStateOf(c);
//若线程池正在运行 或者 处于 shutdown 但是任务不为空,则把新建的worker添加在workers 中
if (rs < SHUTDOWN || (rs == SHUTDOWN && firstTask == null)) {
if (t.isAlive()) // precheck that t is startable
throw new IllegalThreadStateException();
workers.add(w);
int s = workers.size(); //largePoolSize 用于记录曾经出现过得最大的线程数
if (s > largestPoolSize)
largestPoolSize = s;
workerAdded = true;
}
} finally {
mainLock.unlock();
}
if (workerAdded) {//启动任务的执行
t.start();
workerStarted = true;
}
}
} finally {
if (! workerStarted)
addWorkerFailed(w);//若启动失败,则从正在运行的工作集中移除
}
return workerStarted;
}
/**
当 线程池 被 stop 或者 shutdown 或创建线程失败时,则会调用这个方法
1.从 workers 中移除 worker
2.把workerCount -1
3.尝试终止操作:当 线程池的状态为 shutdown 、线程池的数目 和 任务队列都为空,或者线程池已经 stop 、线程池数目为0
*/
private void addWorkerFailed(Worker w) {
final ReentrantLock mainLock = this.mainLock;
mainLock.lock();
try {
if (w != null)
workers.remove(w);
decrementWorkerCount();
tryTerminate();
} finally {
mainLock.unlock();
}
}
final void tryTerminate() {
for (;;) {
int c = ctl.get();
if (isRunning(c) ||
runStateAtLeast(c, TIDYING) ||
(runStateOf(c) == SHUTDOWN && ! workQueue.isEmpty()))
return;
if (workerCountOf(c) != 0) { // Eligible to terminate
interruptIdleWorkers(ONLY_ONE);
return; }
final ReentrantLock mainLock = this.mainLock;
mainLock.lock();
try {
if (ctl.compareAndSet(c, ctlOf(TIDYING, 0))) {
try {
terminated();
} finally {
ctl.set(ctlOf(TERMINATED, 0));
termination.signalAll();
}
return;
}
} finally {
mainLock.unlock();
}
// else retry on failed CAS
}
}
个人觉得还比较重要的一个内部类是 Worker,继承了AbstractQueuedSynchronizer 类,其中最主要的 run 方法
private final class Worker
extends AbstractQueuedSynchronizer
implements Runnable
{
Worker(Runnable firstTask) {
setState(-1); // inhibit interrupts until runWorker
this.firstTask = firstTask;
this.thread = getThreadFactory().newThread(this);
}
public void run() {
runWorker(this);
}
protected boolean isHeldExclusively() {
return getState() != 0;
}
protected boolean tryAcquire(int unused) {
if (compareAndSetState(0, 1)) {
setExclusiveOwnerThread(Thread.currentThread());
return true; }
return false;
}
protected boolean tryRelease(int unused) {
setExclusiveOwnerThread(null);
setState(0);
return true; }
// 参数 1 就是把锁设置为了独占锁,在获取到一个任务后,准备执行前首先要获取这个锁。
public void lock() { acquire(1); }
public boolean tryLock() { return tryAcquire(1); }
public void unlock() { release(1); }
public boolean isLocked() { return isHeldExclusively(); }
void interruptIfStarted() {
Thread t;
if (getState() >= 0 && (t = thread) != null && !t.isInterrupted()) {
try {
t.interrupt();
} catch (SecurityException ignore) {
}
}
}
}
final void runWorker(Worker w) {
Thread wt = Thread.currentThread();
// 不从 任务队列 中获取第一个任务,而是执行刚提交的任务
Runnable task = w.firstTask;
w.firstTask = null;
w.unlock(); // allow interrupts
boolean completedAbruptly = true;
try {
while (task != null || (task = getTask()) != null) {
w.lock();
// 如果线程池是 STOP 状态,则需要保证线程时被中断了
// if not, ensure thread is not interrupted. This // requires a recheck in second case to deal with // shutdownNow race while clearing interrupt
if ((runStateAtLeast(ctl.get(), STOP) ||
(Thread.interrupted() &&
runStateAtLeast(ctl.get(), STOP))) &&
!wt.isInterrupted())
wt.interrupt();
try {
beforeExecute(wt, task); // 执行前的勾子函数,可以通过重写的方式对这个函数进行扩展功能。当发生了异常时,是不会执行任务的,afterExecute 也不会执行
Throwable thrown = null;
try {
task.run(); // 执行任务
} catch (RuntimeException x) { //当发生运行时异常 或 ERROR 时,会原样抛出
thrown = x; throw x;
} catch (Error x) {
thrown = x; throw x;
} catch (Throwable x) { // 如果是一个 Throwable ,则会包装成一个 Error 抛出
thrown = x; throw new Error(x);
} finally {
afterExecute(task, thrown); // 执行后的勾子函数,同样可以进行扩展
}
} finally {
task = null;
w.completedTasks++;
w.unlock();
}
}
completedAbruptly = false;
} finally {
processWorkerExit(w, completedAbruptly);
}
}
~
/**
从任务队列中获取一个任务,在以下情况会退出:
1.线程数 大于 maximumPoolSize,我也不知道为什么会大于??创建的时候就会判断啊??
2.线程池 已经停止
3.线程池 shutdown 并且 队列 也为空
4.获取一个task,超时
@return : 返回一个 task ,或者worker 退出,workerCount -1
*/
private Runnable getTask() {
boolean timedOut = false; // Did the last poll() time out?
retry:
for (;;) {
int c = ctl.get();
int rs = runStateOf(c);
// 如果当前线程池已经 shutdown 或者 stop && 任务队列为空,则workerCount - 1
if (rs >= SHUTDOWN && (rs >= STOP || workQueue.isEmpty())) {
decrementWorkerCount();
return null; }
boolean timed; // Are workers subject to culling?
for (;;) {
int wc = workerCountOf(c);
timed = allowCoreThreadTimeOut || wc > corePoolSize;
if (wc <= maximumPoolSize && ! (timedOut && timed)) //若没有超时
break;
if (compareAndDecrementWorkerCount(c))
return null;
c = ctl.get(); // Re-read ctl
if (runStateOf(c) != rs)
continue retry;
// else CAS failed due to workerCount change; retry inner loop
}
try {
Runnable r = timed ?
workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) :
workQueue.take();
if (r != null)
return r;
timedOut = true; //若没有获取到 task ,超时
} catch (InterruptedException retry) { // 若被中断了,不能算作超时
timedOut = false;
}
}
}
参考资料:
http://ifeve.com/java-threadpool/
http://blog.163.com/among_1985/blog/static/275005232012618849266/
http://developer.51cto.com/art/201203/321885.htm
http://www.51itong.net/java-1-7-threadpoolexecutor-19428.html
http://blog.csdn.net/java2000_wl/article/details/22097059
http://blog.csdn.net/xieyuooo/article/details/8718741