【Python专题】面向对象编程

时间:2022-09-18 17:25:53

注:本系列内容系廖雪峰老师Python教程学习笔记
本文主要内容:

1.面向对象编程简介

  • 面向对象编程Object Oriented Programming简称OOP,是一种区别于面向过程编程的新的编程思想。OOP把对象作为程序的基本单元,一个对象包含了数据和操作数据的函数。

  • Python中的所有数据类型都可以视为对象,也可以自定义对象。自定义的对象数据类型就是面向对象中的类class概念。

  • 示例:使用面向对象程序设计思想设计一个存储学生信息(姓名和成绩)的表。

    为了显示区别,我们首先使用面向过程的程序来构造:

    stu1={'name':'Alex','score':98}
    stu2={'name':'Bob','score':89}
    ...

    然后使用函数来处理学生信息

    def print_score(stu):
    print('%s:%s' %(stu['name'],stu['score']))

    上面的代码简单演示了面向过程设计的存储数据到使用数据过程。接着我们用面向对象的程序设计思想来实现。

    首先,我们来考虑如何存储数据:我们把学生视为一个对象,那么姓名和成绩就是这个对象的两个属性,使用数据就属于对象的一个方法,我们把上面的内容转为代码就是:

    class Student(object):
    def __init__(self,name,score):
    self.name=name
    self.score=score

    def print_score(self):
    print('%s:%s' %(self.name,self.score))

    上面的代码中我们构造了一个Student类(对象),还构造了一个对象的方法(Method)print_score,现在我们就可以来实例化(Instance)对象

    bart=Student('Bart',67)
    lisa=Student('Lisa',88)

    调用对象的方法

    bart.print_score()
    lisa.print_score()

    我们来运行测试:

    >>> from stu import Student
    >>> bart=Student('Bart',67)
    >>> lisa=Student('Lisa',88)
    >>> bart.print_score()
    Bart:67
    >>> lisa.print_score()
    Lisa:88
    >>>

    这样,我们就完成了面向对象程序设计的第一个程序。由上可见,这种程序设计思想抽象程度要高于函数,因为它既包括了数据,又包括了操作数据的方法。

2.类和实例

  • 面向对象最重要的概念就是类(Class)和实例(Instance)。类是抽象的模板,而实例则是根据类创建出来的一个个具体的对象。

  • 类定义的一般格式,以前面创建的Student类为例

    class Student(object):
    pass

    上面Student代表类名,object代表继承的类,这里可以是继承不同的类,如果没有继承类,则使用所有类的公有继承类objectpass里写类的内容,这就是创建类的一般格式。

  • 实例化类的一般格式,以student类为例

    bart=Student('Bart',67)

    给类传入数据以后,类就被实例化为一个个对象,比如上面的bart就属于一个对象,该对象包括了namescore两个属性,还有一个print_score()方法。

    可以给一个实例*的绑定属性,比如,为bart实例添加一个gender属性

    >>> bart.gender='male'
    >>> bart.gender
    'male'

    而有一些属性我们认为是必备的,这就可以通过一个特殊的__init__方法强制填入,比如前面的

    def __init__(self,name,score):
    self.name=name
    self.score=score

    注意这里的__init__是前后各两个下划线。

    另外,__init__方法的第一个参数永远是self,表示创建的实例本身。在实例化对象时,注意要传入与__init__方法相对应的参数,但是self不用传入。

  • 数据封装

    面向对象编程的一个重要特点就是数据封装。我们还是通过前面定义的Student类来看。对于面向过程的程序设计,当我们完成了数据的存储后,要实现对数据的操作,我们通常会定义一个方法,比如

    def print_score(stu):
    print('%s:%s' %(stu.name,stu.score))

    这样,方法和数据就是独立的,但是使用类的概念后,我们直接把这个方法封装进入类里,这样,调用这个类的方法只需这样:

    stu.print_score()

    可见,我们只关心操作对象的方法,而不关心其内部是如何实现的,这就是封装的优势所在。

    注意,在类内部写方法时,也需要把第一个参数置为self,至于其他的参数等都和普通函数完全一样,在调用时也同样不用传入self参数。

3.访问限制

  • Python通过在变量前添加两个下划线来把变量申明为私有private,比如,前面的Student,你现在在外部仍可以修改内部代码

    >>> bart=Student('Bart',99)
    >>> bart.score=78
    >>> bart.score
    78
    >>>

    现在我们给类的namescore属性添加__,让外部不可访问

    class Student(object):
    def __init__(self,name,score):
    self.__name=name
    self.__score=score
    def print_score(self):
    print('%s:%s' %(self.__name,self.__score))

    现在我们再来尝试从外部访问

    >>> bart=Student('Bart',99)
    >>> bart.__name
    Traceback (most recent call last):
    File "<stdin>", line 1, in <module>
    AttributeError: 'Student' object has no attribute '__name'

    发现,程序报错了,可见,通过添加__,程序把变量相应申明为私有了,这时,我们通过在程序内部提供公有的函数(public)来让外部使用

    def getName(self):
    return self.__name
    def setName(self,name):
    self.__name=name

    这样,我们就把内部的变量完全封装了。

    >>> bart=Student('Bart',99)
    >>> bart.setName('BART')
    >>> bart.getName()
    'BART'
    >>>

4.继承和多态

  • 在OOP程序设计中,当我们定义一个class时,可以从某个现有的class继承,新的class称为子类(subclass),而被继承的那个clas称为基类(Base class)

    假设现在我们有一个名为Animal的class

    class Animal:
    def run(self):
    print('Animal is running...')

    现在我们需要构建一个新类Dog类,这样我们就可以从Animal类继承

    class Dog(Animal):

    继承有什么好处呢?最大的好处就是子类会自动拥有父类的全部功能

    >>> Animal().run()
    Animal is running...
    >>> Dog().run()
    Animal is running...
    >>>

    从上面的代码可见,我们并没有为Dog类写run函数,但是他却有该函数功能,原因就是他继承了Animal类的run函数。

    观察上面的Dog函数,我们希望,他打印的信息不是Animal is running...,而应该是Dog is running...,这样,我们来对上面的Dog类做一些修改

    class Dog(Animal):
    def run(self):
    print('Dog is running...')

    调用

    >>> Dog().run()
    Dog is running...

    此时,Dog类的run函数并没有调用父类的,而是使用了在其内部定义的run方法,现在,我们获得了OOP程序设计的另一个好处:多态!

  • Python是一种动态语言。

    相比较于静态语言(如Java)来说,如果需要传入某个特定的数据类型,那么传入的参数必须是相应的数据类型或者是其子类,否则调用就会出错,但对于Python来说则大可不必如此严格,比如,对于参数需要传入Animal类型,那么实际传入的参数未必一定要是该类型,只要是拥有run方法的对象都可以,这叫动态语言的“鸭子类型”,他并不要求严格的继承体系,一个对象只要“看起来像鸭子,走起路来像鸭子”,那么他就可以被看作是鸭子。

5.获取对象信息

  • 在Python中要获取对象的信息可以使用这几个函数:type(),isinstance(),dir()

    • type用法示例:
    >>> type(123)
    <class 'int'>
    >>> type('www')
    <class 'str'>
    >>> type([123])
    <class 'list'>
    >>> type((122,123))
    <class 'tuple'>
    >>> type({'name':'bob'})
    <class 'dict'>

    判断是否属于函数

    >>> import types
    >>> type(abs)
    <class 'builtin_function_or_method'>
    >>> type(abs)==types.BuiltinFunctionType
    True
    • isinstance用法示例
    >>> isinstance(abs,types.BuiltinFunctionType)
    True
    >>> isinstance(123,int)
    True
    >>> isinstance('12',str)
    True
    >>> isinstance([12],list)
    True
    >>> isinstance([12],(list,tuple))
    True
    >>> isinstance({'bbb':122},(list,tuple))
    False
    • dir用法示例:其返回一个对象的所有属性和方法
    >>> dir(int)
    ['__abs__', '__add__', '__and__', '__bool__', '__ceil__', '__class__', '__delattr__', '__dir__', '__divmod__', '__doc__', '__eq__', '__float__', '__floor__', '__floordiv__', '__format__', '__ge__', '__getattribute__', '__getnewargs__', '__gt__', '__hash__', '__index__', '__init__', '__init_subclass__', '__int__', '__invert__', '__le__', '__lshift__', '__lt__', '__mod__', '__mul__', '__ne__', '__neg__', '__new__', '__or__', '__pos__', '__pow__', '__radd__', '__rand__', '__rdivmod__', '__reduce__', '__reduce_ex__', '__repr__', '__rfloordiv__', '__rlshift__', '__rmod__', '__rmul__', '__ror__', '__round__', '__rpow__', '__rrshift__', '__rshift__', '__rsub__', '__rtruediv__', '__rxor__', '__setattr__', '__sizeof__', '__str__', '__sub__', '__subclasshook__', '__truediv__', '__trunc__', '__xor__', 'bit_length', 'conjugate', 'denominator', 'from_bytes', 'imag', 'numerator', 'real', 'to_bytes']
    >>>

    类似__xxx__的属性和方法在Python中都是有特殊用途的,比如__len__方法返回长度。在Python中,如果你调用len()函数试图获取一个对象的长度,实际上,在len()函数内部,它自动去调用该对象的__len__()方法,所以,下面的代码是等价的:

    >>> len('123')
    3
    >>> '123'.__len__()
    3
    >>>

    这样当想为自己写的类添加len(xxx)用法时只需在定义时添加__len__()函数。

    在列出对象的属性后,配合getattr(),setattr()hasattr()方法可以直接操作一个对象的状态。

    >>> class MyObject(object):
    ... def __init__(self):
    ... self.x=9
    ...
    >>> obj=MyObject()
    >>> hasattr(obj,'x')
    True
    >>> obj.x
    9
    >>> setattr(obj,'y',11)
    >>> hasattr(obj,'y')
    True
    >>> getattr(obj,'y')
    11

6.高级特性

  • __slots__方法:常规情况下,对一个类可以任意绑定属性,但当我们不希望这样的情况发生时,则可以限定能绑定的属性,使用的方式只需在创建类的时候把允许绑定的属性赋值给__slots__,比如我们希望仅能绑定namescore属性

    class Student(object):
    __slots__ = ('name', 'age') # 用tuple定义允许绑定的属性名称

    使用__slots__要注意,__slots__定义的属性仅对当前类实例起作用,对继承的子类是不起作用的:

    除非在子类中也定义__slots__,这样,子类实例允许定义的属性就是自身的__slots__加上父类的__slots__

  • 使用@property

    在绑定属性时,如果我们直接把属性暴露出去,虽然写起来很简单,但是,没办法检查参数,导致可以把成绩随便改:

    s = Student()
    s.score = 9999

    这显然不合逻辑。为了限制score的范围,可以通过一个set_score()方法来设置成绩,再通过一个get_score()来获取成绩,这样,在set_score()方法里,就可以检查参数:

    class Student(object):
    def get_score(self):
    return self._score
    def set_score(self, value):
    if not isinstance(value, int):
    raise ValueError('score must be an integer!')
    if value < 0 or value > 100:
    raise ValueError('score must between 0 ~ 100!')
    self._score = value

    现在,对任意的Student实例进行操作,就不能随心所欲地设置score了:

    >>> s = Student()
    >>> s.set_score(60)
    >>> s.get_score()
    60
    >>> s.set_score(9999)
    Traceback (most recent call last):
    ...
    ValueError: score must between 0 ~ 100!

    但是,上面的调用方法又略显复杂,没有直接用属性这么直接简单。

    有没有既能检查参数,又可以用类似属性这样简单的方式来访问类的变量呢?对于追求完美的Python程序员来说,这是必须要做到的!

    还记得装饰器(decorator)可以给函数动态加上功能吗?对于类的方法,装饰器一样起作用。Python内置的@property装饰器就是负责把一个方法变成属性调用的:

    class Student(object):

    @property
    def score(self):
    return self._score

    @score.setter
    def score(self, value):
    if not isinstance(value, int):
    raise ValueError('score must be an integer!')
    if value < 0 or value > 100:
    raise ValueError('score must between 0 ~ 100!')
    self._score = value

    @property的实现比较复杂,我们先考察如何使用。把一个getter方法变成属性,只需要加上@property就可以了,此时,@property本身又创建了另一个装饰器@score.setter,负责把一个setter方法变成属性赋值,于是,我们就拥有一个可控的属性操作:

    >>> s = Student()
    >>> s.score = 60 # OK,实际转化为s.set_score(60)
    >>> s.score # OK,实际转化为s.get_score()
    60
    >>> s.score = 9999
    Traceback (most recent call last):
    ...
    ValueError: score must between 0 ~ 100!

    注意到这个神奇的@property,我们在对实例属性操作的时候,就知道该属性很可能不是直接暴露的,而是通过getter和setter方法来实现的。

    还可以定义只读属性,只定义getter方法,不定义setter方法就是一个只读属性:

    class Student(object):

    @property
    def birth(self):
    return self._birth

    @birth.setter
    def birth(self, value):
    self._birth = value

    @property
    def age(self):
    return 2015 - self._birth

    上面的birth是可读写属性,而age就是一个只读属性,因为age可以根据birth和当前时间计算出来。

  • 多重继承

    继承是面向对象编程的一个重要的方式,因为通过继承,子类就可以拓展父类的功能。

    回顾之前的Animal类,假设我们要实现这几种动物:

    • Dog
    • Bat
    • Parrot
    • Ostrich

    如果按照哺乳动物和鸟类归类,我们可以设计出这样的类的层次:

    【Python专题】面向对象编程

    但是如果按照“能跑”和“能飞”来归类,我们就应该设计出这样的类的层次:

    【Python专题】面向对象编程

    如果要把上面的两种分类都包含进来,我们就得设计更多的层次:

    • 哺乳类:能跑的哺乳类,能飞的哺乳类;
    • 鸟类:能跑的鸟类,能飞的鸟类。

    这么一来,类的层次就复杂了:

    【Python专题】面向对象编程

    为了避免这种情况,就可以使用多重继承。首先,主要的类仍就是按照哺乳类和鸟类进行设计:

    class Animal:
    pass


    #大分类

    class Mammal(Animal):
    pass

    class Bird(Animal):
    pass


    ##底层类

    class Dog(Mammal):
    pass

    class Bat(Mammal):
    pass

    class Parrot(Bird):
    pass

    class Ostrich(Bird):
    pass

    现在,我们再为动物添加RunnableFlyable功能,只需先定义好这两个类:


    #额外属性类

    class Runnable(object):
    def run(self):
    print('Running...')

    class Flyable(object):
    def fly(self):
    print('Flying...')

    此时,我们给需要额外属性的子类添加相应的父类

    class Dog(Mammal,Runnable):
    pass

    class Bat(Mammal,Flyable):
    pass

    这样,通过多继承,子类就拥有了多个父类的功能。这种混合式继承的设计方式称之为MixIn。为了能明显看出是多继承关系,我们一般会把上面类似RunnableFlyable的额外添加的类命名为RunnableMixInFlyableMixIn。Python自带的很多类也是用了这样的设计。

  • 定制类

    形如__xxx__这样的变量或者方法在Python中有着特殊的用途。可以用来为我们自己写的类定制特定的功能,下面我们来介绍常用的几个

    1.__slots__:这个我们在之前已经介绍过,可以用来限定类的属性。

    2.__len()__:这个方法我们也介绍过,是为了能让自己写的类使用len()函数。

    3.__str__:

    我们先定义一个Student类,打印一个实例:

    >>> class Student(object):
    ... def __init__(self, name):
    ... self.name = name
    ...
    >>> print(Student('Michael'))
    <__main__.Student object at 0x109afb190>

    打印出一堆<__main__.Student object at 0x109afb190>,不好看。

    怎么才能打印得好看呢?只需要定义好__str__()方法,返回一个好看的字符串就可以了:

    >>> class Student(object):
    ... def __init__(self, name):
    ... self.name = name
    ... def __str__(self):
    ... return 'Student object (name: %s)' % self.name
    ...
    >>> print(Student('Michael'))
    Student object (name: Michael)

    这样打印出来的实例,不但好看,而且容易看出实例内部重要的数据。

    但是你会发现直接敲变量,打印出来的实例还是不好看:

    >>> s = Student('Michael')
    >>> s
    <__main__.Student object at 0x109afb310>

    这是因为直接显示变量调用的不是__str__(),而是__repr__(),两者的区别是__str__()返回用户看到的字符串,而__repr__()返回程序开发者看到的字符串,也就是说,__repr__()是为调试服务的。

    解决办法是再定义一个__repr__()。但是通常__str__()__repr__()代码都是一样的,所以,有个偷懒的写法:

    class Student(object):
    def __init__(self, name):
    self.name = name
    def __str__(self):
    return 'Student object (name=%s)' % self.name
    __repr__ = __str__

    4.__iter__

    如果一个类想被用于for ... in循环,类似list或tuple那样,就必须实现一个__iter__()方法,该方法返回一个迭代对象,然后,Python的for循环就会不断调用该迭代对象的__next__()方法拿到循环的下一个值,直到遇到StopIteration错误时退出循环。

    class Fib(object):
    def __init__(self):
    self.a,self.b=0,1

    def __iter__(self):
    return self #实例本身就是迭代对象

    def __next__(self):
    self.a,self.b=self.b,self.a+self.b
    if self.a>10000:
    raise StopIteration()
    return self.a

    现在来调用

    >>> L=[]
    >>> for n in Fib():
    ... L.append(n)
    ...
    >>> L
    [1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765]

    5.__getitem__

    如果要让上面的Fib类实现用下标来获得元素,那么需要为其实现__getitem___方法

    class Fib(object):
    def __getitem__(self,n):
    a,b=1,1
    for x in range(n):
    a,b=b,a+b
    return a

    现在就可以是用下标来进行调用操作

    >>> f=Fib()
    >>> f[1]
    1
    >>> f[5]
    8
    >>> f[12]
    233
    >>> f[111]
    114059301025943970552219

    类似的,还可以实现类于list的其他功能,可以使用诸如__setitem__(),__delitem__()等方法。

    6.__getattr__

    正常情况下,当我们调用类的方法或属性时,如果不存在,就会报错。比如定义Student类:

    class Student(object):

    def __init__(self):
    self.name = 'Michael'

    调用name属性,没问题,但是,调用不存在的score属性,就有问题了:

    >>> s = Student()
    >>> print(s.name)
    Michael
    >>> print(s.score)
    Traceback (most recent call last):
    ...
    AttributeError: 'Student' object has no attribute 'score'

    错误信息很清楚地告诉我们,没有找到score这个attribute。

    要避免这个错误,除了可以加上一个score属性外,Python还有另一个机制,那就是写一个__getattr__()方法,动态返回一个属性。修改如下:

    class Student(object):

    def __init__(self):
    self.name = 'Michael'

    def __getattr__(self, attr):
    if attr=='score':
    return 99

    当调用不存在的属性时,比如score,Python解释器会试图调用__getattr__(self, 'score')来尝试获得属性,这样,我们就有机会返回score的值:

    >>> s = Student()
    >>> s.name
    'Michael'
    >>> s.score
    99
  • 使用枚举类

    当我们需要定义常量时,比如月份,可以采用枚举类来完成,Python提供了Enum类来完成这个功能。

    示例:使用枚举类定义月份

    from enum import Enum
    Month=Enum('Month',('Jan','Feb','Mar','Apr','May','Jun','Jul','Aug','Sep','Oct','Nov','Dec'));

    这样我们就获得了Month类型的枚举类,可以直接使用Month.xxx的形式来引用一个常量,或者枚举其所有成员

    >>> for name,member in Month.__members__.items():
    ... print(name,'=>',member,',',member.value)
    ...
    Jan => Month.Jan , 1
    Feb => Month.Feb , 2
    Mar => Month.Mar , 3
    Apr => Month.Apr , 4
    May => Month.May , 5
    Jun => Month.Jun , 6
    Jul => Month.Jul , 7
    Aug => Month.Aug , 8
    Sep => Month.Sep , 9
    Oct => Month.Oct , 10
    Nov => Month.Nov , 11
    Dec => Month.Dec , 12
    >>>

    value属性是自动赋值给成员的int型变量,默认从1开始。

  • 使用元类

    动态语言和静态语言最大的不同,就是函数和类的定义,不是编译时定义的,而是运行时动态创建的。

    比方说我们要定义一个Hello的class,就写一个hello.py模块:

    class Hello(object):
    def hello(self, name='world'):
    print('Hello, %s.' % name)

    当Python解释器载入hello模块时,就会依次执行该模块的所有语句,执行结果就是动态创建出一个Hello的class对象,测试如下:

    >>> from hello import Hello
    >>> h = Hello()
    >>> h.hello()
    Hello, world.
    >>> print(type(Hello))
    <class 'type'>
    >>> print(type(h))
    <class 'hello.Hello'>

    type()函数可以查看一个类型或变量的类型,Hello是一个class,它的类型就是type,而h是一个实例,它的类型就是class Hello

    我们说class的定义是运行时动态创建的,而创建class的方法就是使用type()函数。

    type()函数既可以返回一个对象的类型,又可以创建出新的类型,比如,我们可以通过type()函数创建出Hello类,而无需通过class Hello(object)...的定义:

    >>> def fn(self, name='world'): # 先定义函数
    ... print('Hello, %s.' % name)
    ...
    >>> Hello = type('Hello', (object,), dict(hello=fn)) # 创建Hello class
    >>> h = Hello()
    >>> h.hello()
    Hello, world.
    >>> print(type(Hello))
    <class 'type'>
    >>> print(type(h))
    <class '__main__.Hello'>

    要创建一个class对象,type()函数依次传入3个参数:

    1. class的名称;
    2. 继承的父类集合,注意Python支持多重继承,如果只有一个父类,别忘了tuple的单元素写法;
    3. class的方法名称与函数绑定,这里我们把函数fn绑定到方法名hello上。

    通过type()函数创建的类和直接写class是完全一样的,因为Python解释器遇到class定义时,仅仅是扫描一下class定义的语法,然后调用type()函数创建出class。

    正常情况下,我们都用class Xxx...来定义类,但是,type()函数也允许我们动态创建出类来,也就是说,动态语言本身支持运行期动态创建类,这和静态语言有非常大的不同,要在静态语言运行期创建类,必须构造源代码字符串再调用编译器,或者借助一些工具生成字节码实现,本质上都是动态编译,会非常复杂。

    metaclass

    除了使用type()动态创建类以外,要控制类的创建行为,还可以使用metaclass。

    metaclass,直译为元类,简单的解释就是:

    当我们定义了类以后,就可以根据这个类创建出实例,所以:先定义类,然后创建实例。

    但是如果我们想创建出类呢?那就必须根据metaclass创建出类,所以:先定义metaclass,然后创建类。

    连接起来就是:先定义metaclass,就可以创建类,最后创建实例。

    所以,metaclass允许你创建类或者修改类。换句话说,你可以把类看成是metaclass创建出来的“实例”。

    metaclass是Python面向对象里最难理解,也是最难使用的魔术代码。正常情况下,你不会碰到需要使用metaclass的情况,所以,以下内容看不懂也没关系,因为基本上你不会用到。

    我们先看一个简单的例子,这个metaclass可以给我们自定义的MyList增加一个add方法:

    定义ListMetaclass,按照默认习惯,metaclass的类名总是以Metaclass结尾,以便清楚地表示这是一个metaclass:


    # metaclass是类的模板,所以必须从`type`类型派生:

    class ListMetaclass(type):
    def __new__(cls, name, bases, attrs):
    attrs['add'] = lambda self, value: self.append(value)
    return type.__new__(cls, name, bases, attrs)

    有了ListMetaclass,我们在定义类的时候还要指示使用ListMetaclass来定制类,传入关键字参数metaclass

    class MyList(list, metaclass=ListMetaclass):
    pass

    当我们传入关键字参数metaclass时,魔术就生效了,它指示Python解释器在创建MyList时,要通过ListMetaclass.__new__()来创建,在此,我们可以修改类的定义,比如,加上新的方法,然后,返回修改后的定义。

    __new__()方法接收到的参数依次是:

    1. 当前准备创建的类的对象;
    2. 类的名字;
    3. 类继承的父类集合;
    4. 类的方法集合。

    测试一下MyList是否可以调用add()方法:

    >>> L = MyList()
    >>> L.add(1)
    >> L
    [1]

    而普通的list没有add()方法:

    >>> L2 = list()
    >>> L2.add(1)
    Traceback (most recent call last):
    File "<stdin>", line 1, in <module>
    AttributeError: 'list' object has no attribute 'add'

    动态修改有什么意义?直接在MyList定义中写上add()方法不是更简单吗?正常情况下,确实应该直接写,通过metaclass修改纯属变态。

    但是,总会遇到需要通过metaclass修改类定义的。ORM就是一个典型的例子。

    ORM全称“Object Relational Mapping”,即对象-关系映射,就是把关系数据库的一行映射为一个对象,也就是一个类对应一个表,这样,写代码更简单,不用直接操作SQL语句。

    要编写一个ORM框架,所有的类都只能动态定义,因为只有使用者才能根据表的结构定义出对应的类来。

    让我们来尝试编写一个ORM框架。

    编写底层模块的第一步,就是先把调用接口写出来。比如,使用者如果使用这个ORM框架,想定义一个User类来操作对应的数据库表User,我们期待他写出这样的代码:

    class User(Model):
    # 定义类的属性到列的映射:
    id = IntegerField('id')
    name = StringField('username')
    email = StringField('email')
    password = StringField('password')


    # 创建一个实例:

    u = User(id=12345, name='Michael', email='test@orm.org', password='my-pwd')

    # 保存到数据库:

    u.save()

    其中,父类Model和属性类型StringFieldIntegerField是由ORM框架提供的,剩下的魔术方法比如save()全部由metaclass自动完成。虽然metaclass的编写会比较复杂,但ORM的使用者用起来却异常简单。

    现在,我们就按上面的接口来实现该ORM。

    首先来定义Field类,它负责保存数据库表的字段名和字段类型:

    class Field(object):

    def __init__(self, name, column_type):
    self.name = name
    self.column_type = column_type

    def __str__(self):
    return '<%s:%s>' % (self.__class__.__name__, self.name)

    Field的基础上,进一步定义各种类型的Field,比如StringFieldIntegerField等等:

    class StringField(Field):

    def __init__(self, name):
    super(StringField, self).__init__(name, 'varchar(100)')

    class IntegerField(Field):

    def __init__(self, name):
    super(IntegerField, self).__init__(name, 'bigint')

    下一步,就是编写最复杂的ModelMetaclass了:

    class ModelMetaclass(type):

    def __new__(cls, name, bases, attrs):
    if name=='Model':
    return type.__new__(cls, name, bases, attrs)
    print('Found model: %s' % name)
    mappings = dict()
    for k, v in attrs.items():
    if isinstance(v, Field):
    print('Found mapping: %s ==> %s' % (k, v))
    mappings[k] = v
    for k in mappings.keys():
    attrs.pop(k)
    attrs['__mappings__'] = mappings # 保存属性和列的映射关系
    attrs['__table__'] = name # 假设表名和类名一致
    return type.__new__(cls, name, bases, attrs)

    以及基类Model

    class Model(dict, metaclass=ModelMetaclass):

    def __init__(self, **kw):
    super(Model, self).__init__(**kw)

    def __getattr__(self, key):
    try:
    return self[key]
    except KeyError:
    raise AttributeError(r"'Model' object has no attribute '%s'" % key)

    def __setattr__(self, key, value):
    self[key] = value

    def save(self):
    fields = []
    params = []
    args = []
    for k, v in self.__mappings__.items():
    fields.append(v.name)
    params.append('?')
    args.append(getattr(self, k, None))
    sql = 'insert into %s (%s) values (%s)' % (self.__table__, ','.join(fields), ','.join(params))
    print('SQL: %s' % sql)
    print('ARGS: %s' % str(args))

    当用户定义一个class User(Model)时,Python解释器首先在当前类User的定义中查找metaclass,如果没有找到,就继续在父类Model中查找metaclass,找到了,就使用Model中定义的metaclassModelMetaclass来创建User类,也就是说,metaclass可以隐式地继承到子类,但子类自己却感觉不到。

    ModelMetaclass中,一共做了几件事情:

    1. 排除掉对Model类的修改;
    2. 在当前类(比如User)中查找定义的类的所有属性,如果找到一个Field属性,就把它保存到一个__mappings__的dict中,同时从类属性中删除该Field属性,否则,容易造成运行时错误(实例的属性会遮盖类的同名属性);
    3. 把表名保存到__table__中,这里简化为表名默认为类名。

    Model类中,就可以定义各种操作数据库的方法,比如save()delete()find()update等等。

    我们实现了save()方法,把一个实例保存到数据库中。因为有表名,属性到字段的映射和属性值的集合,就可以构造出INSERT语句。

    编写代码试试:

    u = User(id=12345, name='Michael', email='test@orm.org', password='my-pwd')
    u.save()

    输出如下:

    Found model: User
    Found mapping: email ==> <StringField:email>
    Found mapping: password ==> <StringField:password>
    Found mapping: id ==> <IntegerField:uid>
    Found mapping: name ==> <StringField:username>
    SQL: insert into User (password,email,username,id) values (?,?,?,?)
    ARGS: ['my-pwd', 'test@orm.org', 'Michael', 12345]

    可以看到,save()方法已经打印出了可执行的SQL语句,以及参数列表,只需要真正连接到数据库,执行该SQL语句,就可以完成真正的功能。

7.小结

本文内容较多,都是围绕Python中的面向对象编程的。首先我们介绍了面向对象编程的概念和其在Python的应用,然后我们使用一个实例Student类来讲述Python中类的创建使用以及其一些常用的功能,然后介绍了Python面向对象编程的几个特点:包括数据封装,继承和多态,访问限制等,然后介绍了Python面向对象编程的几个高级功能,用来定制话自己创建的类。学习本文需要逐一自己理解并实际动手操作才能掌握,切不可眼高手低。