【BZOJ1045】[HAOI2008]糖果传递
题面
题解
根据题意,我们可以很容易地知道最后每个人的糖果数\(ave\)
设第\(i\)个人给第\(i-1\)个人\(X_i\)个糖果(\(i=1\)则表示第1个人个第\(n\)个人,\(X_i<0\)则表示\(i-1\)给\(i\)糖果\(-X_i\))
由题,第一个人最后\(A_1-X_1+X_2=ave\)个
\(\Rightarrow x_2=ave-A_1+X_1\)(设\(C_1=A_1-ave\),下面同理)
\(\Rightarrow x_2=x_1-C_1\)
\(\Rightarrow x_3=x_1-C_2\)
\(......\)
\(\Rightarrow x_n=x_1-C_{n-1}\)
题目变为求\(x_1\)使\(|x1|+|x1-c_1|+|x_1-c_2|+...+|x_1-c_{n-1}|\)最小
可知\(x_1\)取中间值时原式最小
代码
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <algorithm>
using namespace std;
typedef long long ll;
const int MAX_N = 1e6 + 5;
int N;
ll A[MAX_N], C[MAX_N], tot, M;
int main () {
while (scanf("%d", &N) != EOF) {
tot = 0;
for (int i = 1; i <= N; i++) { scanf("%lld", &A[i]); tot += A[i]; }
M = tot / N;
C[0] = 0;
for (int i = 1; i < N; i++) C[i] = C[i - 1] + A[i] - M;
sort(&C[0], &C[N]);
ll mid = C[N / 2], ans = 0;
for (int i = 0; i < N; i++) ans += abs(mid - C[i]);
printf("%lld\n", ans);
}
return 0;
}