基本思想:假设
#include<stdio.h>
#include<stdlib.h>
#include<limits.h>
#include<stdbool.h>
/*---prim算法时间复杂度O(n^2),n为顶点数,时间复杂度与边的数目无关,因此适用于求边稠密的图的最小生成树---*/
#define MAX_VERTEX_NUM 20 //图中顶点最大个数
#define INFINITY INT_MAX //无穷大∞
typedef char VertexType; //顶点名称类型
typedef int VRType; //边的权值类型
//使用邻接矩阵作为图的存储结构
typedef struct
{
VertexType vexs[MAX_VERTEX_NUM]; //顶点向量
VRType arcs[MAX_VERTEX_NUM][MAX_VERTEX_NUM]; //邻接矩阵,其值为相邻顶点的边的权值
int vexnum,arcnum; //图的顶点数和边数
}MGraph;
//创建图
//获取顶点在顶点向量中的下标,不存在返回-1
int locateVertex(MGraph G, VertexType v)
{
int i;
for(i=0;i<G.vexnum;i++)
if(G.vexs[i]==v)
return i;
return -1;
}
void createMGraph(MGraph *mg)
{
int i,j;
printf("输入图的顶点数和边数:\n");
scanf("%d %d",&(mg->vexnum),&(mg->arcnum));
getchar();
printf("输入图的顶点名称:\n");
for(i=0;i<mg->vexnum;i++)
{
printf("输入第%d个顶点:",i);
scanf("%c",&(mg->vexs[i]));
getchar();
}
//初始化邻接矩阵
for(i=0;i<mg->vexnum;i++)
for(j=0;j<mg->vexnum;j++)
mg->arcs[i][j] = INFINITY;
printf("输入边的两个顶点个权值v1 v2 w\n");
char v1,v2;
int w,k;
for(k=0;k<mg->arcnum;k++)
{
printf("输入第%d条边两个顶点和权值:",k);
scanf("%c %c %d",&v1,&v2,&w);
getchar();
i = locateVertex(*mg,v1);
j = locateVertex(*mg,v2);
mg->arcs[i][j] = mg->arcs[j][i] = w; //无向图
// mg->arcs[i][j] = w; //有向图
}
}
//打印图的临界矩阵
void print(MGraph G)
{
int i,j;
printf("图的邻接矩阵\n");
for(i=0;i<G.vexnum;i++)
{
for(j=0;j<G.vexnum;j++)
{
if(G.arcs[i][j]!=INFINITY)
printf("%d ",G.arcs[i][j]);
else
printf("∞ ");
}
printf("\n");
}
printf("\n");
}
//prim算法构造图的最小生成树
//记录从顶点集U到V-U的代价最小的边的辅助数组定义
typedef struct
{
VertexType adjvex; //顶点名称
VRType lowcost; //对应边的权值
}closedge[MAX_VERTEX_NUM];
void PRIM(MGraph G, VertexType u)
{
int k,i,j,sumw=0;
closedge closedge;
k = locateVertex(G,u); //获取起始顶点的下标
//初始化辅助数组
for(i=0;i<G.vexnum;i++)
{
if(i!=k)
{
closedge[i].lowcost = G.arcs[k][i];
closedge[i].adjvex = u;
}
}
closedge[k].lowcost = 0; //初始,U={u}
printf("最小生成树边及权值\n");
for(i=1;i<G.vexnum;i++) //选择其余G.vexnum-1个顶点
{
int min = INFINITY,v,index = k;
for(v=0;v<G.vexnum;v++) //求出最小生成树下一个结点:第index顶点
{
if(closedge[v].lowcost<min && closedge[v].lowcost!=0 && closedge[v].lowcost!=INFINITY)
{
min = closedge[v].lowcost;
index = v;
}
}
sumw = sumw+closedge[index].lowcost;
printf("%c--%c %d\n",closedge[index].adjvex,G.vexs[index],closedge[index].lowcost); //输出生成树边及相应权值
closedge[index].lowcost = 0; //将第index个顶点并入U
for(j=0;j<G.vexnum;j++)
{
if(G.arcs[index][j]<closedge[j].lowcost) //新顶点并入后重新选择最小边
{
closedge[j].adjvex = G.vexs[index];
closedge[j].lowcost = G.arcs[index][j];
}
}
}
printf("最小生成树权值%d\n",sumw);
}
int main()
{
MGraph mg;
createMGraph(&mg);
print(mg);
PRIM(mg,mg.vexs[0]);
}